題目列表(包括答案和解析)
用表示不大于的最大整數.令集合,對任意和,定義,集合,并將集合中的元素按照從小到大的順序排列,記為數列.
(Ⅰ)求的值;
(Ⅱ)求的值;
(Ⅲ)求證:在數列中,不大于的項共有項.
6
|
[ |
2 |
3 |
1 |
3 |
()(本小題滿分12分)貴陽六中織高二年級4個班的學生到益佰制藥廠、貴陽鋼廠、貴陽輪胎廠進行社會實踐,規(guī)定每個班只能在這3個廠中任選擇一個,假設每個班選擇每個廠的概率是等可能的。(Ⅰ)求3個廠都有班級選擇的概率;(Ⅱ)用表示有班級選擇的廠的個數,求隨機變量的概率分布及數學期望。
6
|
[ |
2 |
3 |
1 |
3 |
(二十三)
【解題思路】:設f(x)的二次項系數為m,其圖象上兩點為(1-x,)、B(1+x,)因為,,所以,由x的任意性得f(x)的圖象關于直線x=1對稱, ………………………………………………………………(2分)
∵ ,,,
,,,………………………………(4分)
∴ 當時,∵f(x)在x≥1內是增函數,
,.
∵ , ∴ .………………………………………………(8分)
當時,∵f(x)在x≥1內是減函數.
同理可得或,.………………………………………(11分)
綜上:的解集是當時,為
當時,為,或.…………………………(12分)
【試題評析】:本小題主要考查最簡單三角不等式的解法等基本知識,涉及到分類討論、二次函數的對稱性、向量的數量積、函數的單調性等基本知識和方法的綜合運用,考查運算能力及邏輯思維能力。
18.(理)【解題思路】:(1)設甲隊在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊獲勝,前四場比賽甲隊獲勝三場,
依題意得.……………………………(6分)
。2)設甲隊獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們彼此互斥.
∴ .
………………………………………………………………(12分)
【試題評析】:考查互斥事件有一個發(fā)生的概率,相互獨立事件同時發(fā)生的概率,n次獨立重復實驗恰好k次發(fā)生的概率?疾檫壿嬎季S能力,要求考生具有較強的辨別雷同信息的能力。
19.【解題思路】:解法一:(1)取PC中點M,連結ME、MF,則MF∥CD,MF=CD,又AE∥CD,AE=CD,∴AE∥MF,且AE=MF,∴四邊形AFME是平行四邊形,∴AF∥EM,∵AF平面PCE,∴AF∥平面PCE. …………………………………(4分)
(2)∵PA⊥平面ABCD,CD⊥AD. ∴CD⊥PD,∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°, ………………………………………………………………(6分)
∴△PAD是等腰直角三角形,∴AF⊥PD,又AF⊥CD,∴AF⊥平面PCD,而EM∥AF,∴EM⊥平面PCD. 又EM平面PEC,∴面PEC⊥面PCD. 在平面PCD內過F作FH⊥PC于H,則FH就是點F到平面PCE的距離. …………………………………(10分)
由已知,PD=,PF=,PC=,△PFH∽△PCD,∴,
∴FH=. ………………………………………………………………(12分)
解法二:(1)取PC中點M,連結EM,
=+=,∴AF∥EM,又EM平面PEC,AF平面PEC,∴AF∥平面PEC. ………………………………………………(4分)
(2)以A為坐標原點,分別以所在直線為x、y、z
軸建立坐標系. ∵PA⊥平面ABCD,CD⊥AD,∴CD⊥PD,
∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°. ……(6分)
∴A(0, 0, 0), P(0, 0, 2), D(0, 2, 0), F(0, 1, 1), E, C(3, 2, 0),設平面PCE的法向量為=(x, y, z),則⊥,⊥,而=(-,0,2),
=(,2,0),∴-x+2z=0,且x+2y=0,解得y=-x,z=x. 取x=4
得=(4, -3, 3),………………………………………………………………(10分)
又=(0,1,-1),
故點F到平面PCE的距離為d=.…………(12分)
【試題評析】:本小題主要考查直線與平面的位置關系等基本知識,是否利用空間向量供考生選擇?疾榭臻g想象能力、邏輯推理能力和運算能力
(二十四)
17. 解:(1) 設,則 …………………1分
…………………2分
又是奇函數,所以…………………3分
=……4分
………………5分
是[-1,1]上增函數………………6分
(2)是[-1,1]上增函數,由已知得: …………7分
等價于 …………10分
解得:,所以…………12分
二次函數在上遞減………………………12分
故時,
……………………13分
,…………………………14分
(二十五)
16.解: 由題意,得為銳角,, 3分
, 6分
由正弦定理得 , 9分
. 12分
17.(本題滿分12分)
有紅藍兩粒質地均勻的正方體形狀骰子,紅色骰子有兩個面是8,四個面是2,藍色骰子有三個面是7,三個面是1,兩人各取一只骰子分別隨機擲一次,所得點數較大者獲勝.
(1)分別求出兩只骰子投擲所得點數的分布列及期望;
(2)求投擲藍色骰子者獲勝的概率是多少?
17.解:(1)設紅色骰子投擲所得點數為,其分布如下:
8
2
P
|