7.如圖7.在Rt△ADB中.∠D=90°.C為AD上一點.則x可能是A.10° B.20° C.30° D.40° 查看更多

 

題目列表(包括答案和解析)

(2009年莆田)如圖1,在矩形21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站中,動點21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站從點21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站出發(fā),沿21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站方向運動至點21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站處停止.設(shè)點21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站運動的路程為21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站,21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站的面積為21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站,如果21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站關(guān)于21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站的函數(shù)圖象如圖2所示,則當(dāng)21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站時,點21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站應(yīng)運動到(    )

21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站
 


             

A.21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站處     B.21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站處     C.21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站處          D.21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站

查看答案和解析>>

如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,作∠ABC的平分線交AC、CD于點E、F.
(1)求證:CE=CF;
(2)如圖2,過點F作FG∥AB交AC于點G,若AC=10,EG=4,求CE的長度.

查看答案和解析>>

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB、AC上,且G、F分別是AB、AC的中點.
(1)填空:GF的長度為
2
2
2
2
,等腰梯形DEFG的面積為
6
6

(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設(shè)運動時間為x秒,運動后的等腰梯形為DEF’G’(如圖2)
探究:在運動過程中,四邊形BDG’G能否為菱形?若能,請求出此時x的值;若不能,請說明理由.

查看答案和解析>>

我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長度之比等于大線段AC與線段AB的長度之比,即
CB
AC
=
AC
AB
=
5
-1
2
=0.61803398874989
.這種分割稱為黃金分割,點C叫做線段AB的黃金分割點.類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點為腰的黃金分割點.
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你說明D為腰AB的黃金分割點的理由.
(2)若腰和上底相等,對角線和下底相等的等腰梯形叫作黃金梯形,其對角線的交點為對角線的黃金分割點.如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點.
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對邊分別為a、b、c.若D是AB的黃金分割點,那么a、b、c之間的數(shù)量關(guān)系是什么并證明你的結(jié)論.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

如圖1,在Rt△ABC中,∠ACB=90°,點0是BC的中點,D為AB上一動點,延長DO到E,且OE=OD,連接CE.
(1)如圖2,若D為AB的中點,請判斷四邊形EDAC的形狀,并說明理由;
(2)如圖3,若∠A=60°,∠BOD=30°,四邊形EDAC是等腰梯形嗎?請說明理由;
(3)若AC=15,AB=25,請在圖4中作出點D的位置使四邊形的EDAC周長最小,請補(bǔ)全圖形并求出四邊形的EDAC的最小周長.
精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊答案