如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB、AC上,且G、F分別是AB、AC的中點.
(1)填空:GF的長度為
2
2
2
2
,等腰梯形DEFG的面積為
6
6

(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設運動時間為x秒,運動后的等腰梯形為DEF’G’(如圖2)
探究:在運動過程中,四邊形BDG’G能否為菱形?若能,請求出此時x的值;若不能,請說明理由.
分析:(1)根據(jù)三角形中位線定理求出GF的長,再利用輔助線的幫助過點GM⊥BC于M.推出2GF=BC,G為AB中點可知GM的值.從而求出梯形面積.
(2)①BG∥DG′,GG′∥BC推出四邊形BDG′G是平行四邊形;當BD=BG=
1
2
AB=2時,四邊形BDG′G為菱形.
解答:解:(1)∵G、F分別是AB、AC的中點,
∴GF=
1
2
BC=
1
2
×4
2
=2
2
,
過G點作GM⊥BC于M,
∵AB=AC,∠BAC=90°,BC=4
2
,G為AB中點
∴GM=
2
(1分)
∴S梯形DEFG=
1
2
(2
2
+4
2
)×
2
=6,
∴等腰梯形DEFG的面積為6 (3分)
故答案為:2
2
,6;

(2)能為菱形(4分)
由BG∥DG′,GG′∥BC
∴四邊形BDG′G是平行四邊形(6分)
又AB=AC,∠BAC=90°,BC=4
2
,
∴AB=AC=4,
當BD=BG=
1
2
AB=2時,四邊形BDG′G為菱形
此時可求得x=2,
∴當x=2秒時,四邊形BDG′G為菱形(8分)
點評:此題主要考查勾股定理、三角形中位線、等腰梯形的性質(zhì)及菱形性質(zhì)等知識點的綜合運用,要求學生對所學知識能靈活運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點.
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設運動時間為x秒,運動后的等腰梯形為DEF′G′(如圖2).
探究1:在運動過程中,四邊形BDG′G能否是菱形?若能,請求出此時x的值;若不能,請說明理由;
探究2:設在運動過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D在邊AB上運動,DE平分∠CDB交邊BC于點E,EM⊥BD垂足為M,EN⊥CD垂足為N.
精英家教網(wǎng)
(1)當AD=CD時,求證:DE∥AC;
(2)探究:AD為何值時,△BME與△CNE相似?
(3)探究:AD為何值時,四邊形MEND與△BDE的面積相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在平面直角坐標系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點.
(1)求線段AB的長;
(2)若一個扇形的周長等于(1)中線段AB的長,當扇形的半徑取何值時,扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點,垂足為點M,分別求出OM,OC,OD的長,并驗證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設BC=a,AC=b,AB=c.CD=b,試說明:
1
a2
+
1
b2
=
1
h2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,分別以AB、AC為底邊向△ABC的外側(cè)作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.試探究線段FD、FE的數(shù)量關(guān)系,并加以證明.
說明:如果你經(jīng)歷反復探索,沒有找到解決問題的方法,可以從圖2、3中選取一個,并分別補充條件∠CAB=45°、∠CAB=30°后,再完成你的證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,AB=AC=3,BD為AC邊的中線,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教網(wǎng)
(1)求AA1的長;
(2)如圖2,在Rt△A1B1C中按上述操作,則AA2的長為
 
;
(3)在Rt△A2B2C中按上述操作,則AA3的長為
 
;
(4)一直按上述操作得到Rt△An-1Bn-1C,則AAn的長為
 

查看答案和解析>>

同步練習冊答案