(Ⅱ)試在函數(shù)的圖象上求兩點使以這兩點為切點的切線互相垂直.且切點的橫坐標(biāo)都在上, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的圖象過坐標(biāo)原點O,且在點(-1,f(-1))處的切線的斜率是-5.
(1)試確定實數(shù)b,c的值,并求f(x)在區(qū)間[-1,2]上的最大值;
(2)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?說明理由.

查看答案和解析>>

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)在曲線y=x-
2
x
上存在兩個不同點關(guān)于直線y=x對稱,求出其坐標(biāo);若曲線y=x+
p
x
(p≠0)上存在兩個不同點關(guān)于直線y=x對稱,求實數(shù)p的范圍;
(3)當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并取a=
1
16
a=
2
2
加以研究.當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x(x≠3,保留4位有效數(shù)字),使得f(x)<0成立;
(2)在曲線上存在兩個不同點關(guān)于直線y=x對稱,求出其坐標(biāo);若曲線(p≠0)上存在兩個不同點關(guān)于直線y=x對稱,求實數(shù)p的范圍;
(3)當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并取加以研究.當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)若曲線y=x+數(shù)學(xué)公式(p≠0)上存在兩個不同點關(guān)于直線y=x對稱,求實數(shù)p的取值范圍;
(3)當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間數(shù)學(xué)公式上單調(diào)遞減,在區(qū)間數(shù)學(xué)公式上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

已知函數(shù)
(1)試在函數(shù)f(x)的圖象上求兩點,使以這兩點為切點的切線互相垂直,且切點的橫坐標(biāo)都在區(qū)間[-1,1]上;
(2)求證:(x∈R)

查看答案和解析>>

一、選擇題:

ADBAA    BCCDC

二、填空題:

11. ;        12. ;      13

14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

三、解答題:

16.解:(Ⅰ)

                                                                …………5分

成等比數(shù)列,知不是最大邊

                                                    …………6分

(Ⅱ)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

第二天通過檢查的概率為,                  …………………………4分

由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

(Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

第二天通過而第一天不通過檢查的概率為,      ………………10分

由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

 

18.解:方法一

(Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

在△中,,,,

由余弦定理有

所以二面角的大小是.                              (6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

.                              …(12分)

 

19.解:(Ⅰ)設(shè)

則   ……①

     ……②

∴②-①得  2d2=0,∴d=p=0

                                            …………6分

(Ⅱ)當(dāng)an=n時,恒等式為[S(1,n)]2=S(3,n)

證明:

相減得:

相減得:

                                         ………………………………13分

20.解:(Ⅰ)∵,∴,

又∵,∴

,

∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

當(dāng)的斜率為0時,顯然=0,滿足題意,

當(dāng)的斜率不為0時,設(shè)方程為,

代入橢圓方程整理得:

,

          ,

,從而

綜合可知:對于任意的割線,恒有.                ………(8分)

(Ⅱ),

即:

當(dāng)且僅當(dāng),即(此時適合于的條件)取到等號.

∴三角形△ABF面積的最大值是.                 ………………………………(13分)

 

21.解:(Ⅰ)              ……………………………………………4分

(Ⅱ)或者……………………………………………8分

(Ⅲ)略                                        ……………………………………13分

 

 

 

雅禮中學(xué)08屆高三第八次質(zhì)檢數(shù)學(xué)(文科)試題參考答案

 

一、選擇題:

ADBAA    BCCDC

 

二、填空題:

11. ;        12. ;      13

14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

 

三、解答題:

 

16.解:(Ⅰ)

                                                                …………5分

成等比數(shù)列,知不是最大邊

                                                    …………6分

(Ⅱ)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

 

17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

第二天通過檢查的概率為,                  …………………………4分

由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

(Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

第二天通過而第一天不通過檢查的概率為,      ………………10分

由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

 

 

 

 

 

18.解:方法一

(Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

在△中,,,,

由余弦定理有

,

 

所以二面角的大小是.                              (6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

.                              …(12分)

 

19.解:(Ⅰ)設(shè)

則   ……①

     ……②

∴②-①得  2d2=0,∴d=p=0

                                            …………6分

(Ⅱ)當(dāng)an=n時,恒等式為[S(1,n)]2=S(3,n)

證明:

相減得:

相減得:

                                         ………………………………13分

 

20.解:(Ⅰ)∵,∴

又∵,∴,

,

∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

當(dāng)的斜率為0時,顯然=0,滿足題意,

當(dāng)的斜率不為0時,設(shè)方程為

代入橢圓方程整理得:

,

          ,

,從而

綜合可知:對于任意的割線,恒有.                ………(8分)

(Ⅱ)

即:,

當(dāng)且僅當(dāng),即(此時適合于的條件)取到等號.

∴三角形△ABF面積的最大值是.                 ………………………………(13分)

 

21.解:(Ⅰ)              ……………………………………………4分

(Ⅱ)或者……………………………………………8分

(Ⅲ)略                                        ……………………………………13分


同步練習(xí)冊答案