(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)在曲線y=x-
2
x
上存在兩個不同點關于直線y=x對稱,求出其坐標;若曲線y=x+
p
x
(p≠0)上存在兩個不同點關于直線y=x對稱,求實數(shù)p的范圍;
(3)當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并取a=
1
16
a=
2
2
加以研究.當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質:在區(qū)間(0,
1
e
]
上單調遞減,在區(qū)間[
1
e
,1)
上單調遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)
分析:(1)①把x=3代入函數(shù)解析式,求出f(3),即可把f(3)<0轉化為關于a的不等式,解此不等式,即可求出a的范圍.
②因為滿足f(x0)<0一組數(shù)a,x0有無數(shù)多個,只要寫出一組即可,注意a在(1)中所求范圍內取值,在相應的找出x0的值.
(2)先設出曲線上關于y=x對稱的兩點坐標,代入曲線方程,利用兩點坐標之間的關系,就可解出這兩點
(3)提出的問題是:當a∈(0,
1
e
)時,函數(shù)y=ax與y=logax的圖象有3個交點;當a∈[
1
e
,1)時,函數(shù)y=ax與y=logax的圖象有1個交點.把a=
1
16
a=
2
2
代入兩個函數(shù)解析式,分別求出交點,驗證是否與提出的問題一致.
解答:解:(1)①∵f(x)=ax-x(a>1),f(3)<0
∴a3-3<0,解得a<
33
又∵a>1,∴a的取值范圍為(1,
33

②答案不唯一,例如可寫a=1,1,x0=2
(2)設曲線y=x-
2
x
上兩個對稱點為(m,n),(n,m),
于是
n=m-
2
m
m=n-
2
n
,
m-
2
m
-
2
m-
2
m
=m⇒m2=1
,m=±1,
當m=1時,n=-1,當m=-1時,n=1
所以兩個對稱點為(1,-1),(-1,1),
(3)提出的問題是:當a∈(0,
1
e
)時,函數(shù)y=ax與y=logax的圖象有3個交點;
當a∈[
1
e
,1)時,函數(shù)y=ax與y=logax的圖象有1個交點.
舉例研究如下:顯然,當0<a<1時,函數(shù)y=ax與y=logax的圖象在直線y=x上有一個交點.
a=
1
16
時,有3個交點,1個在直線y=x上,另2個為(
1
2
,
1
4
)
、(
1
4
1
2
)

a=
2
2
時,有1個交點,在直線y=x上.
點評:本題主要考查了利用函數(shù)解不等式,以及函數(shù)與曲線方程之間的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
①試求直線PQ的斜率kPQ的取值范圍;
②求f(x)圖象上任一點切線的斜率k的范圍;
(2)由(1)你能得出什么結論?(只須寫出結論,不必證明),試運用這個結論解答下面的問題:已知集合MD是滿足下列性質函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①當D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
②當D=(0,
3
3
)
,函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)=lg(1+x)+lg(1-x).①求函數(shù)f(x)的定義域.②判斷函數(shù)的奇偶性,并給予證明.
(2)已知函數(shù)f(x)=ax+3,(a>0且a≠1),求函數(shù)f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)=
x+3(x≤0)
2x(x>0)
,則f(f(-2))為
2
2
;
(2)不等式f(x)>2的解集是
(-1,0]∪(1,+∞)
(-1,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•浦東新區(qū)模擬)(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)若曲線y=x+
p
x
(p≠0)上存在兩個不同點關于直線y=x對稱,求實數(shù)p的取值范圍;
(3)當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質:在區(qū)間(0,
1
e
]
上單調遞減,在區(qū)間[
1
e
,1)
上單調遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
(1)已知函數(shù)f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定義域內是連續(xù)函數(shù),數(shù)列{an}通項公式為an=
1
an
,則數(shù)列{an}的所有項之和為1.
(2)過點P(3,3)與曲線(x-2)2-
(y-1)2
4
=1有唯一公共點的直線有且只有兩條.
(3)向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間[-1,1]上是增函數(shù),則實數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個.
其中正確的命題有
(1)(2)(4)
(1)(2)(4)
(填序號)

查看答案和解析>>

同步練習冊答案