.故 [點(diǎn)評] 本小題考查同角三角函數(shù)關(guān)系.兩角和公鈥︹€�查看更多

 

題目列表(包括答案和解析)

【解析】本小題考查直線方程的求法。畫草圖,由對稱性可猜想。

事實(shí)上,由截距式可得直線,直線,兩式相減得,顯然直線AB與CP的交點(diǎn)F滿足此方程,又原點(diǎn)O也滿足此方程,故為所求的直線OF的方程。

答案

查看答案和解析>>

(本小題滿分10分)

中,為邊上的一點(diǎn),,,,求

【命題意圖】本試題主要考查同角三角函數(shù)關(guān)系、兩角和差公式和正弦定理在解三角形中的應(yīng)用,考查考生對基礎(chǔ)知識、基本技能的掌握情況.

查看答案和解析>>

(本小題滿分10分)

中,為邊上的一點(diǎn),,,求

【命題意圖】本試題主要考查同角三角函數(shù)關(guān)系、兩角和差公式和正弦定理在解三角形中的應(yīng)用,考查考生對基礎(chǔ)知識、基本技能的掌握情況.

查看答案和解析>>

 若圓與圓(a>0)的公共弦的長為,

___________      。

【考點(diǎn)定位】本小題考查圓與圓的位置關(guān)系,基礎(chǔ)題。

 

查看答案和解析>>

已知△的內(nèi)角所對的邊分別為.

 (1) 若, 求的值;

(2) 若△的面積 求的值.

【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力。第一問中,得到正弦值,再結(jié)合正弦定理可知,,得到(2)中所以c=5,再利用余弦定理,得到b的值。

解: (1)∵, 且,   ∴ .        由正弦定理得,    ∴.    

   (2)∵       ∴.   ∴c=5      

由余弦定理得,

 

查看答案和解析>>


同步練習(xí)冊答案
鍏� 闂�