設(shè)M(x,y)是以線段AB為直徑的圓上的任意一點,則 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)已知焦點在x軸上的雙曲線C的兩條漸近線相交于坐標原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知雙曲線C的一個焦點與點A關(guān)于直線y=x對稱.

(1)求雙曲線C的標準方程;

(2)若Q是雙曲線C上的任一點,F(xiàn)1、F2分別是雙曲線C的左、右焦點,從點F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

(3)設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過點M(-2,0)和線段AB的中點,求直線L在y軸上的截距b的取值范圍

查看答案和解析>>

已知曲線C1
|x|
a
+
|y|
b
=1(a>b>0)
所圍成的封閉圖形的面積為4
5
,曲線C1的內(nèi)切圓半徑為
2
5
3
.記C2為以曲線C1與坐標軸的交點為頂點的橢圓.
(Ⅰ)求橢圓C2的標準方程;
(Ⅱ)設(shè)AB是過橢圓C2中心的任意弦,l是線段AB的垂直平分線.M是l上異于橢圓中心的點.
(1)若|MO|=λ|OA|(O為坐標原點),當點A在橢圓C2上運動時,求點M的軌跡方程;
(2)若M是l與橢圓C2的交點,求△AMB的面積的最小值.

查看答案和解析>>

已知曲線C1
|x|
a
+
|y|
b
=1(a>b>0)
所圍成的封閉圖形的面積為4
5
,曲線C1的內(nèi)切圓半徑為
2
5
3
.記C2為以曲線C1與坐標軸的交點為頂點的橢圓.
(Ⅰ)求橢圓C2的標準方程;
(Ⅱ)設(shè)AB是過橢圓C2中心的任意弦,l是線段AB的垂直平分線.M是l上異于橢圓中心的點.
(1)若|MO|=λ|OA|(O為坐標原點),當點A在橢圓C2上運動時,求點M的軌跡方程;
(2)若M是l與橢圓C2的交點,求△AMB的面積的最小值.

查看答案和解析>>


同步練習冊答案