(3)令.若對任意.都有.求的取值范圍. 江蘇省南京市2008――2009學(xué)年度第一學(xué)期期末調(diào)研測試高三數(shù)學(xué)附加題 查看更多

 

題目列表(包括答案和解析)

在數(shù)列{an}中,a1=1,從第二項起,每一項與它前一項的差依次組成首項為2且公比為q(q>0)的等比數(shù)列.
(1)當(dāng)q=1時,證明數(shù)列{an}是等差數(shù)列;
(2)若q=2,求數(shù)列{nan}的前n項和Sn;
(3)令bn=
an+1an
,若對任意n∈N*,都有bn+1<bn,求q的取值范圍.

查看答案和解析>>

已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1,令f(x)=g(x+)+mlnx+(m∈R),
(Ⅰ)求g(x)的表達(dá)式;
(Ⅱ)若x>0使f(x)≤0成立,求實數(shù)m的取值范圍;
(Ⅲ)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1。

查看答案和解析>>

已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x)=g(1-x),g(x)的最小值為-且g(1)=-1.令f(x)=g(x+)+mlnx+(m∈R,x>0).

(1)求g(x)的表達(dá)式;

(2)若x>0使f(x)≤0成立,求實數(shù)m的取值范圍;

(3)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對x1、x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=g(x+
1
2
)+mlnx+
9
8
(m∈R,x>0)

(1)求g(x)的表達(dá)式;
(2)若?x>0使f(x)≤0成立,求實數(shù)m的取值范圍;
(3)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=2g(x+
1
2
)+mx-3m2lnx+
9
4
(m>0,x>0)

(1)求g(x)的表達(dá)式;
(2)若函數(shù)f(x)在x∈[1,+∞)上的最小值為0,求m的值;
(3)記函數(shù)H(x)=[x(x-a)2-1]•[-x2+(a-1)x+a-1],若函數(shù)y=H(x)有5個不同的零點,求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案