題目列表(包括答案和解析)
如圖,,
,…,
,…是曲線
上的點(diǎn),
,
,…,
,…是
軸正半軸上的點(diǎn),且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標(biāo)原點(diǎn)).
(1)寫出、
和
之間的等量關(guān)系,以及
、
和
之間的等量關(guān)系;
(2)求證:(
);
(3)設(shè),對(duì)所有
,
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問(wèn)利用有,
得到
第二問(wèn)證明:①當(dāng)時(shí),可求得
,命題成立;②假設(shè)當(dāng)
時(shí),命題成立,即有
則當(dāng)
時(shí),由歸納假設(shè)及
,
得
第三問(wèn)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間
上單調(diào)遞增,所以當(dāng)
時(shí),
最大為
,即
解:(1)依題意,有,
,………………4分
(2)證明:①當(dāng)時(shí),可求得
,命題成立;
……………2分
②假設(shè)當(dāng)時(shí),命題成立,即有
,……………………1分
則當(dāng)時(shí),由歸納假設(shè)及
,
得.
即
解得(
不合題意,舍去)
即當(dāng)時(shí),命題成立. …………………………………………4分
綜上所述,對(duì)所有,
. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間
上單調(diào)遞增,所以當(dāng)
時(shí),
最大為
,即
.……………2分
由題意,有.
所以,
已知函數(shù),(
),
(1)若曲線與曲線
在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值
(2)當(dāng)時(shí),若函數(shù)
在區(qū)間[k,2]上的最大值為28,求k的取值范圍
【解析】(1),
∵曲線與曲線
在它們的交點(diǎn)(1,c)處具有公共切線
∴,
∴
(2)當(dāng)時(shí),
,
,
令,則
,令
,
∴
為單調(diào)遞增區(qū)間,
為單調(diào)遞減區(qū)間,其中F(-3)=28為極大值,所以如果區(qū)間[k,2]最大值為28,即區(qū)間包含極大值點(diǎn)
,所以
【考點(diǎn)定位】此題應(yīng)該說(shuō)是導(dǎo)數(shù)題目中較為常規(guī)的類型題目,考查的切線,單調(diào)性,極值以及最值問(wèn)題都是課本中要求的重點(diǎn)內(nèi)容,也是學(xué)生掌握比較好的知識(shí)點(diǎn),在題目中能夠發(fā)現(xiàn)F(-3)=28,和分析出區(qū)間[k,2]包含極大值點(diǎn),比較重要
已知函數(shù).(
)
(1)若在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若在區(qū)間上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問(wèn)中,首先利用在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問(wèn)中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.然后求解得到。
解:(1)在區(qū)間
上單調(diào)遞增,
則在區(qū)間
上恒成立. …………3分
即,而當(dāng)
時(shí),
,故
.
…………5分
所以.
…………6分
(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.
∵ …………9分
① 若,令
,得極值點(diǎn)
,
,
當(dāng),即
時(shí),在(
,+∞)上有
,此時(shí)
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng),即
時(shí),同理可知,
在區(qū)間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時(shí)在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當(dāng)時(shí),函數(shù)
的圖象恒在直線
下方.
已知點(diǎn)P在半徑為1的半圓周上沿著AP
B路徑運(yùn)動(dòng),設(shè)弧 的長(zhǎng)度為x,弓形面積為
(如圖所示的陰影部分),則關(guān)于函數(shù)
的有如下結(jié)論:
①函數(shù)的定義域和值域都是
;
②如果函數(shù)的定義域R,則函數(shù)
是周期函數(shù);
③如果函數(shù)的定義域R,則函數(shù)
是奇函數(shù);
④函數(shù)在區(qū)間
上是單調(diào)遞增函數(shù).
以上結(jié)論的正確個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
已知點(diǎn)P在半徑為1的半圓周上沿著A→P→B路徑運(yùn)動(dòng),設(shè)弧的長(zhǎng)度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:
①函數(shù)y=f(x)的定義域和值域都是[0,π];
②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);
③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)在區(qū)間[0,π]上是單調(diào)遞增函數(shù).
以上結(jié)論的正確個(gè)數(shù)是
A.1
B.2
C.3
D.4
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com