②不存在.使f(x)既是奇函數(shù).又是偶函數(shù), 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
2x-12x+1

(1)證明:函數(shù)f(x)既是R上的奇函數(shù),也是R上的增函數(shù);
(2)是否存在m使f(2t2-4)+f(4m-2t)>f(0)對任意t∈[0,1]均成立?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

對于函數(shù)f(x)=ax2+b|x-m|+c  (其中a、b、m、c為常數(shù),x∈R),有下列三個命題:
(1)若f(x)為偶函數(shù),則m=0;
(2)不存在實(shí)數(shù)a、b、m、c,使f(x)是奇函數(shù)而不是偶函數(shù);
(3)f(x)不可以既是奇函數(shù)又是偶函數(shù).其中真命題的個數(shù)為( 。

查看答案和解析>>

對于函數(shù)f(x)=ax2+b|x-m|+c  (其中a、b、m、c為常數(shù),x∈R),有下列三個命題:
(1)若f(x)為偶函數(shù),則m=0;
(2)不存在實(shí)數(shù)a、b、m、c,使f(x)是奇函數(shù)而不是偶函數(shù);
(3)f(x)不可以既是奇函數(shù)又是偶函數(shù).其中真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

已知函數(shù)f(x)=
2x-1
2x+1

(1)證明:函數(shù)f(x)既是R上的奇函數(shù),也是R上的增函數(shù);
(2)是否存在m使f(2t2-4)+f(4m-2t)>f(0)對任意t∈[0,1]均成立?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

關(guān)于x的函數(shù)f(x)=sin(x+φ)有以下命題:
①對任意的φ,f(x)都是非奇非偶函數(shù);
②不存在φ,使f(x)既是奇函數(shù),又是偶函數(shù);
③存在φ,使f(x)是奇函數(shù);
④對任意的φ,f(x)都不是偶函數(shù).
其中一個假命題的序號是
 
.因?yàn)楫?dāng)φ=
 
時,該命題的結(jié)論不成立.

查看答案和解析>>


同步練習(xí)冊答案