(3) 求證:. 理 科 數(shù) 學(xué) 答 案一. 選擇題: 題次1 2 3 4 5 6 7 8 9 10答案 A A A D D B B B A D二. 填空題: 查看更多

 

題目列表(包括答案和解析)

(09年西城區(qū)抽樣理)(14分)

   已知f是直角坐標(biāo)平面xOy到自身的一個(gè)映射,點(diǎn)在映射f下的象為點(diǎn),記作.

設(shè),. 如果存在一個(gè)圓,使所有的點(diǎn)都在這個(gè)圓內(nèi)或圓上,那么稱這個(gè)圓為點(diǎn)的一個(gè)收斂圓. 特別地,當(dāng)時(shí),則稱點(diǎn)為映射f下的不動(dòng)點(diǎn).

    (Ⅰ) 若點(diǎn)在映射f下的象為點(diǎn).

  1 求映射f下不動(dòng)點(diǎn)的坐標(biāo);

  2 若的坐標(biāo)為(1,2),判斷點(diǎn)是否存在一個(gè)半徑為3的收斂圓,并說明理由.

(Ⅱ) 若點(diǎn)在映射f下的象為點(diǎn),(2,3). 求證:點(diǎn)存在一個(gè)半徑為的收斂圓.

查看答案和解析>>

(理)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=,an+2SnSn-1=0(n≥2),

(1)判斷{}是否為等差數(shù)列?并證明你的結(jié)論;

(2)求Sn和an;

(3)求證:S12+S22+…+Sn2.

(文)數(shù)列{an}的前n項(xiàng)和Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上.

(1)求證:數(shù)列{an+3}是等比數(shù)列;

(2)求數(shù)列{an}的通項(xiàng)公式;

(3)數(shù)列{an}中是否存在成等差數(shù)列的三項(xiàng)?若存在,求出一組適合條件的三項(xiàng);若不存在,請說明理由.

查看答案和解析>>

(理)設(shè)函數(shù)f(x)=1+9x6tlnx,在x=a,x=b處分別取得極大值和極小值,連接函數(shù)圖像上A(a,f(a)),B(b,f(b))兩點(diǎn).

(1)求實(shí)數(shù)t的取值范圍;

(2)是否存在實(shí)數(shù)t,使得線段AB(包括兩端點(diǎn))與直線x=1相交?若存在,求出t的取值范圍;若不存在,請說明理由.

(文)已知函數(shù)f(x)=mx3-x的圖像上,以N(1,n)為切點(diǎn)的切線的傾斜角為

(1)求m,n的值;

(2)是否存在最小的正整數(shù)k,使得不等式f(x)≤k-1991對于x∈[-1,3]恒成?如果存在,請求出最小的正整數(shù)k;如果不存在,請說明理由。

(3)求證:|f(sinx)+f(cosx)|≤2f(t+)(x∈R,t>0).

查看答案和解析>>

(理)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=,an+2SnSn-1=0(n≥2),

(1)判斷{}是否為等差數(shù)列?并證明你的結(jié)論;

(2)求Sn和an;

(3)求證:S12+S22+…+Sn2.

(文)數(shù)列{an}的前n項(xiàng)和Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上.

(1)求證:數(shù)列{an+3}是等比數(shù)列;

(2)求數(shù)列{an}的通項(xiàng)公式;

(3)數(shù)列{an}中是否存在成等差數(shù)列的三項(xiàng)?若存在,求出一組適合條件的三項(xiàng);若不存在,說明理由.

查看答案和解析>>

(理)已知:fn(x)=a1x+a2x2+…+anxn,fn(-1)=(-1)n·n,n=1,2,3,….

(1)求a1、a2、a3;

(2)求數(shù)列{an}的通項(xiàng)公式;

(3)求證:fn()<1.

(文)設(shè)函數(shù)f(x)=2ax3-(6a+3)x2+12x(a∈R),

(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極大值和極小值;

(2)若函數(shù)f(x)在區(qū)間(-∞,1)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案