(理)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足a1=,an+2SnSn-1=0(n≥2),

(1)判斷{}是否為等差數(shù)列?并證明你的結(jié)論;

(2)求Sn和an;

(3)求證:S12+S22+…+Sn2.

(文)數(shù)列{an}的前n項(xiàng)和Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上.

(1)求證:數(shù)列{an+3}是等比數(shù)列;

(2)求數(shù)列{an}的通項(xiàng)公式;

(3)數(shù)列{an}中是否存在成等差數(shù)列的三項(xiàng)?若存在,求出一組適合條件的三項(xiàng);若不存在,說(shuō)明理由.

(理)(1)解:S1=a1=,∴=2.                                              

當(dāng)n≥2時(shí),an=Sn-Sn-1,即Sn-Sn-1=-2SnSn-1,                                        

=2.

故{}是以2為首項(xiàng),以2為公差的等差數(shù)列.                                  

(2)解:由(1)得=2+(n-1)·2=2n,Sn=.                                        

當(dāng)n≥2時(shí),an=-2SnSn-1=;                                           

當(dāng)n=1時(shí),a1=.

∴an=                                                 

(3)證法一:①當(dāng)n=1時(shí),成立.                               

②假設(shè)n=k時(shí),不等式成立,即成立.

則當(dāng)n=k+1時(shí),

=

=

=,

即當(dāng)n=k+1時(shí),不等式成立.

由①②可知對(duì)任意n∈N*不等式成立.                                          

證法二:

=

=

=

=.

(文)(1)證明:由題意知Sn=2an-3n,

∴an+1=Sn+1-Sn=2an+1-3(n+1)-2an+3n.

∴an+1=2an+3.                                                               

∴an+1+3=2(an+3).

=2.

又a1=S1=2a1-3,a1=3,

∴a1+3=6.                                                                 

∴數(shù)列{an+3}成以6為首項(xiàng)以2為公比的等比數(shù)列.                             

(2)解:由(1)得an+3=6·2n-1=3·2n,

∴an=3·2n-3.                                                                 

(3)解:設(shè)存在s、p、r∈N*且s<p<r使as、ap、ar成等差數(shù)列,

∴2ap=as+ar.

∴2(3·2p-3)=3·2s-3+3·2r-3.

∴2p+1=2s+2r,                                                               

即2p-s+1=1+2r-s.                                                               (*)

∵s、p、r∈N*且s<p<r,

∴2p-s+1為偶數(shù),1+2r-s為奇數(shù).

∴(*)為矛盾等式,不成立.

故這樣的三項(xiàng)不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}的前n項(xiàng)和Sn=3n-n2(n∈N*),則當(dāng)n>2時(shí)有(    )

A.nan<Sn<na1        B.Sn<nan<na1        C.nan>Sn>na1       D.Sn>na1>nan

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足a1=,an+2SnSn-1=0(n≥2),

(1)判斷{}是否為等差數(shù)列?并證明你的結(jié)論;

(2)求Sn和an;

(3)求證:S12+S22+…+Sn2.

(文)數(shù)列{an}的前n項(xiàng)和Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上.

(1)求證:數(shù)列{an+3}是等比數(shù)列;

(2)求數(shù)列{an}的通項(xiàng)公式;

(3)數(shù)列{an}中是否存在成等差數(shù)列的三項(xiàng)?若存在,求出一組適合條件的三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}的前n項(xiàng)之和Sn與an滿(mǎn)足關(guān)系式:nSn+1=(n+2)Sn+an+2(n∈N+).

(1)若a1=0,求a2、a3的值;

(2)求證:a1=0是數(shù)列{an}為等差數(shù)列的充要條件.

(文)如圖,直線l:y=(x-2)和雙曲線C:=1(a>0,b>0)交于A、B兩點(diǎn),且|AB|=,又l關(guān)于直線l1:y=x對(duì)稱(chēng)的直線l2與x軸平行.

(1)求雙曲線C的離心率;

(2)求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}中,a1=t(t≠0且t≠1),a2=t2,當(dāng)x=t時(shí),函數(shù)f(x)=(an-an-1)x2-(an+1-an)x(n≥2)取得極值.

(1)求證:數(shù)列{an+1-an}(n∈N*)是等比數(shù)列;

(2)記bn=anln|an|(n∈N*),當(dāng)t=時(shí),數(shù)列{bn}中是否存在最大項(xiàng).若存在,是第幾項(xiàng)?若不存在,請(qǐng)說(shuō)明理由.

(文)已知等比數(shù)列{xn}各項(xiàng)均為不等于1的正數(shù),數(shù)列{yn}滿(mǎn)足=2(a>0且a≠1),設(shè)y3=18,y6=12.

(1)求證:數(shù)列{yn}是等差數(shù)列;

(2)若存在自然數(shù)M,使得n>M時(shí),xn>1恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,滿(mǎn)足關(guān)系Sn=2an-2.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且bn=,求證:對(duì)任意正整數(shù)n,總有Tn<2;

(3)在正數(shù)數(shù)列{cn}中,設(shè)(cn)n+1=an+1(n∈N*),求數(shù)列{lncn}中的最大項(xiàng).

(文)已知數(shù)列{xn}滿(mǎn)足xn+1-xn=()n,n∈N*,且x1=1.設(shè)an=xn,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.

(1)求xn的表達(dá)式;

(2)求T2n;

(3)若Qn=1(n∈N*),試比較9T2n與Qn的大小,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案