題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
1.B 2.B 3.A 4.C 5.C 6.B 7.D 8.B 9.C 10.B
11.A 12.D
【解析】
1.,所以選B.
2.的系數(shù)是,所以選B.
3.,所以選.
4.為鈍角或,所以選C
5.,所以選C.
6.,所以選B.
7.,所以選D.
8.化為或,所以選B.
9.將左移個(gè)單位得,所以選A.
10.直線與橢圓有公共點(diǎn),所以選B.
11.如圖,設(shè),則,
,
,從而,因此與底面所成角的正弦值等于.所以選A.
12.畫(huà)可行域 可知符合條件的點(diǎn)是:共6個(gè)點(diǎn),故,所以選D.
二、
13.185..
14.60..
15.,由,得
.
16..如圖:
如圖,可設(shè),又,
.
當(dāng)面積最大時(shí),.點(diǎn)到直線的距離為.
三、
17.(1)由三角函數(shù)的定義知:.
(2)
.
18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則.
(2)設(shè)兩年后出口額超過(guò)危機(jī)前出口額的事件為,則.
19.(1)設(shè)與交于點(diǎn).
從而,即,又,且
平面為正三角形,為的中點(diǎn),
,且,因此,平面.
(2)平面,∴平面平面又,∴平面平面
設(shè)為的中點(diǎn),連接,則,
平面,過(guò)點(diǎn)作,連接,則.
為二面角的平面角.
在中,.
又.
20.(1)
(2)
又
綜上:.
21.(1)的解集為(1,3)
∴1和3是的兩根且
|