已知橢圓.過(guò)焦點(diǎn)垂直于長(zhǎng)軸的弦長(zhǎng)為l.且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形. 查看更多

 

題目列表(包括答案和解析)

已知橢圓,過(guò)焦點(diǎn)垂直于長(zhǎng)軸的弦長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)Q(-1,0)的直線l交橢圓于A,B兩點(diǎn),交直線x=-4于點(diǎn)E,點(diǎn)Q分 所成比為λ,點(diǎn)E分所成比為μ,求證λ+μ為定值,并計(jì)算出該定值.

查看答案和解析>>

已知橢圓,過(guò)焦點(diǎn)垂直于長(zhǎng)軸的弦長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.

   (1)求橢圓的方程;

   (2)過(guò)點(diǎn)Q(-1,0)的直線l交橢圓于A,B兩點(diǎn),交直線x=-4于點(diǎn)E,點(diǎn)Q分 所成比為λ,點(diǎn)E分所成比為μ,求證λ+μ為定值,并計(jì)算出該定值.

查看答案和解析>>

 

        已知橢圓,過(guò)焦點(diǎn)垂直于長(zhǎng)軸的弦長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.

   (1)求橢圓的方程;

   (2)過(guò)點(diǎn)Q(-1,0)的直線交橢圓于A、B兩點(diǎn),交直線于點(diǎn)E,,求證:為定值.

 

 

 

 

 

 

 

查看答案和解析>>

已知橢圓,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),交直線于點(diǎn),且

.求證:為定值,并計(jì)算出該定值.

查看答案和解析>>

已知橢圓,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.
(Ⅰ)求橢圓的方程;    (Ⅱ)過(guò)點(diǎn)Q(-1,0)的直線l交橢圓于A,B兩點(diǎn),交直線x=-4于點(diǎn)E,且,.求證:λ+μ為定值,并計(jì)算出該定值.

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:,

       是減函數(shù),由,得,,故選A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的單調(diào)遞增區(qū)間為

       (2)

             

             

             

18.解:(1)當(dāng)時(shí),有種坐法,

              ,即,

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列為          

0

2

3

4

              則

19.解:(1)時(shí),,

             

              又              ,

             

              是一個(gè)以2為首項(xiàng),8為公比的等比數(shù)列

             

       (2)

             

              最小正整數(shù)

20.解法一:

       (1)設(shè)于點(diǎn)

              平面

于點(diǎn),連接,則由三垂線定理知:是二面角的平面角.

由已知得,

,

∴二面角的大小的60°.

       (2)當(dāng)中點(diǎn)時(shí),有平面

              證明:取的中點(diǎn),連接、,則,

              ,故平面即平面

              平面

              平面

解法二:由已知條件,以為原點(diǎn),以、、軸、軸、軸建立空間直角坐標(biāo)系,則

             

       (1),

              ,設(shè)平面的一個(gè)法向量為,

設(shè)平面的一個(gè)法向量為,則

二面角的大小為60°.

(2)令,則,

      

       由已知,,要使平面,只需,即

則有,得當(dāng)中點(diǎn)時(shí),有平面

21.解:(1)由條件得,所以橢圓方程是

             

(2)易知直線斜率存在,令

       由

      

,

,

代入

       有

22.解:(1)

       上為減函數(shù),時(shí),恒成立,

       即恒成立,設(shè),則

       時(shí),在(0,)上遞減速,

      

      

(2)若即有極大值又有極小值,則首先必需有兩個(gè)不同正要,,

       即有兩個(gè)不同正根

       令

    ∴當(dāng)時(shí),有兩個(gè)不同正根

    不妨設(shè),由知,

    時(shí),時(shí),時(shí),

    ∴當(dāng)時(shí),既有極大值又有極小值.www.ks5u.com

 

 


同步練習(xí)冊(cè)答案