(Ⅱ)若G為橢圓上不同于長軸端點任一點.求取值范圍, 查看更多

 

題目列表(包括答案和解析)

已知橢圓的中心在坐標(biāo)原點,焦點在X軸上,F(xiàn)1,F2分別是橢圓的左、右焦點,M是橢圓短軸的一個端點,△MF1F2的面積為4,過F1的直線與橢圓交于A,B兩點,△ABF2的周長為.

(Ⅰ)求此橢圓的方程;

(Ⅱ)若N是左標(biāo)平面內(nèi)一動點,G是△MF1F2的重心,且,求動點N的軌跡方程;

(Ⅲ)點p審此橢圓上一點,但非短軸端點,并且過P可作(Ⅱ)中所求得軌跡的兩條不同的切線,、R是兩個切點,求的最小值.

查看答案和解析>>

(本小題滿分13分)如圖,分別是橢圓ab>0)的左右焦點,M為橢圓上一點,垂直于x軸,且OM與橢圓長軸和短軸端點的連線AB平行。

(1)求橢圓的離心率;

(2)若G為橢圓上不同于長軸端點任一點,求∠取值范圍;

(3)過且與OM垂直的直線交橢圓于P、Q

求橢圓的方程

查看答案和解析>>

(本小題滿分13分)如圖,分別是橢圓ab>0)的左右焦點,M為橢圓上一點,垂直于x軸,且OM與橢圓長軸和短軸端點的連線AB平行。
(1)求橢圓的離心率;
(2)若G為橢圓上不同于長軸端點任一點,求∠取值范圍;
(3)過且與OM垂直的直線交橢圓于P、Q
求橢圓的方程

查看答案和解析>>

 

二、選擇題

 

題號

1

2

3

4

5

6

7

8

9

10

答案

C

A

B

C

B

C

A

 

三、填空題

(11){x│x<1 } (12) (13)  3   (14)m=0或m≥1    (15) 2004

(16)②③④

三解答題

(17)(Ⅰ);  (Ⅱ).

 

(18)解:由題目知的圖像是開口向下,交軸于兩點的拋物線,對稱軸方程為(如圖)

那么,當(dāng)時,有,代入原式得:

解得:

經(jīng)檢驗知: 不符合題意,舍去.

(Ⅰ)由圖像知,函數(shù)在內(nèi)為單調(diào)遞減,所以:當(dāng)時,,當(dāng)時,.

內(nèi)的值域為

(Ⅱ)令

要使的解集為R,則需要方程的根的判別式,即

解得  當(dāng)時,的解集為R.

(19)(Ⅰ);  (Ⅱ)存在M=4.

 

(20)解:任設(shè)x 1>x2

         f(x 1)-f(x2) = a x 1+ - a x 2 -

                  =(x 1-x 2)(a+ )

         ∵f(x)是R上的減函數(shù),

         ∴(x 1-x 2)(a+ )<0恒成立

<1

       ∴a≤ -1 

(21)解:(Ⅰ)由已知

  ,

(Ⅱ)設(shè),

當(dāng)且僅當(dāng)時, 

 

(Ⅲ)

 橢圓的方程為

(22)(Ⅰ).

(Ⅱ)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

 

 

 

 


同步練習(xí)冊答案