A. B.P=T=S 查看更多

 

題目列表(包括答案和解析)

橢圓C:(a>b>0)的一個焦點F1(-2,0),右準線方程x=8.

(1)求橢圓C的方程;

(2)若M為右準線上一點,A為橢圓C的左頂點,連結(jié)AM交橢圓于點P,求的取值范圍;

(3)設(shè)圓Q:(x-t)2+y2=1(t>4)與橢圓C有且只有一個公共點,過橢圓C上一點B作圓Q的切線BS、BT,切點為S,T,求·的最大值.

查看答案和解析>>

設(shè)橢圓T:(a>b>0),直線l過橢圓左焦點F1且不與x軸重合,l與橢圓交于P、Q,左準線與x軸交于K,|KF1|=2.當l與x軸垂直時,|PQ|=

(1)求橢圓T的方程;

(2)直線l繞著F1旋轉(zhuǎn),與圓O:x2+y2=5交于A,B兩點,若|AB|∈[4,],求△F2PQ的面積S的取值范圍(F2為橢圓的右焦點).

查看答案和解析>>

已知橢圓=1(a>b>0)的左、右焦點分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且|PT|的最小值不小于(a-c).

(1)證明:橢圓上的點到F2的最短距離為a-c;

(2)求橢圓的離心率e的取值范圍;

(3)設(shè)橢圓的短半軸長為1,圓F2與x軸的右交點為Q,過點Q作斜率為k(k>0)的直線l與橢圓相交于A、B兩點,若OA⊥OB,求直線l被圓F2截得的弦長S的最大值.

查看答案和解析>>

已知橢圓=1(a>b>0)的左、右焦點分別是F1(-c,0),F(xiàn)2(c,0),Q是橢圓外的動點,滿足||=2a.點P是線段F1Q與該橢圓的交點,點T在線段F2Q上,并且滿足·=0,||≠0.

(1)設(shè)x為點P的橫坐標,證明||=a+x;

(2)求點T的軌跡C的方程;

(3)試問:在點T的軌跡C上,是否存在點M,使△F1MF2的面積S=b2?若存在,求∠F1MF2的正切值;若不存在,請說明理由.

查看答案和解析>>

已知橢圓=1(a>b>0)的左、右焦點分別是F1(-c,0),F(xiàn)2(c,0),Q是橢圓外的動點,滿足||=2a.點P是線段F1Q與該橢圓的交點,點T在線段F2Q上,并且滿足·=0,||≠0.

(1)設(shè)x為點P的橫坐標,證明||=a+x;

(2)求點T的軌跡C的方程;

(3)試問:在點T的軌跡C上,是否存在點M,使△F1MF2的面積S=b2?若存在,求∠F1MF2的正切值;若不存在,請說明理由.

查看答案和解析>>

1.(理)A (文)B 2.(理)B。ㄎ模〣 3.B 4.A 5.D 

6.(理)B。ㄎ模〥 7.B 8.(理)C (文)D 9.D 10.D 11.C

12.(理)A。ㄎ模〢 13.1或0 14. 15.10080° 16.

  17.解析:(1)的分布如下

0

1

2

P

 。2)由(1)知

  ∴ 

  18.解析:(1)以點為坐標原點,所在直線為x軸,所在直線為z軸,建立空間直角坐標系,設(shè),a(0,+∞).

  ∵ 三棱柱為正三棱柱,則B,,C的坐標分別為:(b,0,0),,,,,,(0,0,a). ∴  ,,,,

 。2)在(1)條件下,不妨設(shè)b=2,則

  又AM,N坐標分別為(b,0,a),(,0),(,,a).

  ∴ ,.  ∴ 

  同理 

  ∴ △與△均為以為底邊的等腰三角形,取中點為P,則,為二面角的平面角,而點P坐標為(1,0,),

  ∴ ,,. 同理 ,,

  ∴ 

 ∴ ∠NPM=90°二面角的大小等于90°.

  19.解析:設(shè)派x名消防員前去救火,用t分鐘將火撲滅,總損失為y,則

  y=滅火勞務(wù)津貼+車輛、器械裝備費+森林損失費

   =125tx+100x+60(500+100t

   =

   =

   =

  

  當且僅當,即x=27時,y有最小值36450.

  故應(yīng)該派27名消防員前去救火,才能使總損失最少,最少損失為36450元.

  20.解析:(1)當A、B、C三點不共線時,由三角形中線性質(zhì)知

;

  當AB,C三點共線時,由在線段BC外側(cè),由x=5,因此,當x=1或x=5時,有

  同時也滿足:.當A、B、C不共線時,

定義域為[1,5].

 。2)(理)∵ . ∴ dyx-1=

  令 tx-3,由,,

  兩邊對t求導(dǎo)得:關(guān)于t在[-2,2]上單調(diào)增.

  ∴ 當t=2時,=3,此時x=1. 當t=2時,=7.此時x=5.故d的取值范圍為[3,7].

 。ㄎ模┯,,

  ∴ 當x=3時,.當x=1或5時,

  ∴ y的取值范圍為[,3].

  21.解析:(1)令,令y=-x,則

在(-1,1)上是奇函數(shù).

  (2)設(shè),則,而.即 當時,

  ∴ fx)在(0,1)上單調(diào)遞減.

 。3)(理)由于,

  ,

  ∴ 

  22.解析:(理)由平面,連AH并延長并BCM

  則 由H為△ABC的垂心. ∴ AMBC

  于是 BC⊥平面OAHOHBC

  同理可證:平面ABC

  又 ,,是空間中三個不共面的向量,由向量基本定理知,存在三個實數(shù),,使得abc

  由 0bc, 同理

  ∴ .            ①

  又 AHOH,

  ∴ =0

                     ②

  聯(lián)立①及②,得 、

  又由①,得 ,,,代入③得:

  ,,

  其中,于是

 。ㄎ模1)聯(lián)立方程ax+1=y,消去y得:  (*)

  又直線與雙曲線相交于AB兩點, ∴

  又依題 OAOB,令A,B兩點坐標分別為(,),(),則 

  且 

,而由方程(*)知:代入上式得.滿足條件.

 。2)假設(shè)這樣的點AB存在,則lyax+1斜率a=-2.又AB中點上,則,

  又 ,

  代入上式知 這與矛盾.

  故這樣的實數(shù)a不存在.

 


同步練習(xí)冊答案