題目列表(包括答案和解析)
1 |
2 |
1 |
22 |
1 |
2n-1 |
2n+3 |
2n-1 |
a | ||||||||
(1+
|
1 | ||
|
Tn+2 | 2n |
已知三個(gè)正整數(shù),1,按某種順序排列成等差數(shù)列.
(1)求的值;
(2)若等差數(shù)列的首項(xiàng)、公差都為,等比數(shù)列的首項(xiàng)、公比也都為,前項(xiàng)和分別
為,且,求滿足條件的正整數(shù)的最大值.
已知三個(gè)正整數(shù)按某種順序排列成等差數(shù)列。
(1)求的值;
(2)若等差數(shù)列的首項(xiàng)、公差都為,等比數(shù)列的首項(xiàng)、公比也都為,前項(xiàng)和分別為,且,求滿足條件的正整數(shù)的最大值。
已知三個(gè)正整數(shù),1,按某種順序排列成等差數(shù)列.
(1)求的值;
(2)若等差數(shù)列的首項(xiàng)、公差都為,等比數(shù)列的首項(xiàng)、公比也都為,前項(xiàng)和分別
為,且,求滿足條件的正整數(shù)的最大值.
一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,滿分60分.
(1)A (2)B (3)D (4)C (5)A (6)B
(7)C (8)A (9)D (10)C (11)B (12)A
二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,滿分16分.
(13) (14)
(15)2 (16)
三、解答題
(17)本小題主要考查三角函數(shù)的基本公式和三角函數(shù)的恒等變換等基本知識(shí),以及推理能力和運(yùn)算能力.滿分12分.
解:由已知.
從而
.
(18)本小題主要考查線面關(guān)系和正方體性質(zhì)等基本知識(shí),考查空間想象能力和推理論證能力.滿分12分.
解法一:(I)連結(jié)BP.
∵AB⊥平面BCC1B1, ∴AP與平面BCC1B1所成的角就是∠APB,
∵CC1=4CP,CC1=4,∴CP=I.
在Rt△PBC中,∠PCB為直角,BC=4,CP=1,故BP=.
在Rt△APB中,∠ABP為直角,tan∠APB=
∴∠APB=
(19)本小題主要考查簡(jiǎn)單線性規(guī)劃的基本知識(shí),以及運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力.滿分12分.
解:設(shè)投資人分別用x萬(wàn)元、y萬(wàn)元投資甲、乙兩個(gè)項(xiàng)目.
由題意知
目標(biāo)函數(shù)z=x+0.5y.
上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.
|