(Ⅱ)已知.設(shè)點(diǎn)是橢圓上的兩個動點(diǎn). 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C的離心率為
3
2
,點(diǎn)A,B分別是橢圓C的長軸、短軸的端點(diǎn),點(diǎn)O到直線AB的距離為
6
5
5

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個動點(diǎn),滿足EP⊥EQ,求
EP
QP
的取值范圍.

查看答案和解析>>

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)的離心率為
3
2
,短軸一個端點(diǎn)到上焦點(diǎn)的距離為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)Q(-2,0)作直線l與橢圓C相交于A、B兩點(diǎn),直線m是過點(diǎn)(-
4
17
,0)
,且以
a
=(0,1)為方向向量的直線,設(shè)N是直線m上一動點(diǎn),滿足
ON
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)).問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點(diǎn)是F(1,0),已知橢圓短軸的兩個三等分點(diǎn)與一個焦點(diǎn)構(gòu)成正三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知Q(x0,y0)為橢圓上任意一點(diǎn),求以Q為切點(diǎn),橢圓的切線方程.
(3)設(shè)點(diǎn)P為直線x=4上一動點(diǎn),過P作橢圓兩條切線PA,PB,求證直線AB過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

已知橢圓M的中心為坐標(biāo)原點(diǎn),且焦點(diǎn)在x軸上,若M的一個頂點(diǎn)恰好是拋物線y2=8x的焦點(diǎn),M的離心率e=
1
2
,過M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線l,交M于A,B兩點(diǎn).
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)N(t,0)是一個動點(diǎn),且(
NA
+
NB
)⊥
AB
,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

已知點(diǎn)P(-1,
3
2
)是橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),F(xiàn)1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A、B是橢圓E上兩個動點(diǎn),
PA
+
PB
PO
(0<λ<4,且λ≠2).求證:直線AB的斜率等于橢圓E的離心率;
(3)在(2)的條件下,當(dāng)△PAB面積取得最大值時,求λ的值.

查看答案和解析>>

一、選擇題(每小題5分,共50分)

  1.C  2.B  3.D  4.A  5.C  6.B  7.A  8.C  9.B  10.D

二、填空題(每小題4分.共24分)

  11.5  12.4   13.3825   14.6ec8aac122bd4f6e 15.6ec8aac122bd4f6e   16.3

三.解答題(本大題共6小題,共76分)

17.(本題12分)

解:(Ⅰ)∵6ec8aac122bd4f6e

6ec8aac122bd4f6e          ………………………(2分)

6ec8aac122bd4f6e    ………………………(3分)

6ec8aac122bd4f6e              ……………………(4分)

∵在6ec8aac122bd4f6e中,6ec8aac122bd4f6e

6ec8aac122bd4f6e                             ………………………(5分)

(Ⅱ)設(shè)6ec8aac122bd4f6e分別是6ec8aac122bd4f6e6ec8aac122bd4f6e的對邊,

∵?6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e    ①                                          ……………………(6分)

由正弦定理:6ec8aac122bd4f6e,得 6ec8aac122bd4f6e             ……………………(7分)

6ec8aac122bd4f6e

6ec8aac122bd4f6e    ②                                          ……………………(8分)

由①②解得6ec8aac122bd4f6e                                    ……………………(9分)

由余弦定理,得6ec8aac122bd4f6e                       ………………(10分)

                 6ec8aac122bd4f6e

                 6ec8aac122bd4f6e                                       ………………(11分)

6ec8aac122bd4f6e,即邊6ec8aac122bd4f6e的長為6ec8aac122bd4f6e。                              ……………………(12分)

 

18.(本題12分]

解:(Ⅰ)∵6ec8aac122bd4f6e是偶函數(shù),

6ec8aac122bd4f6e,即6ec8aac122bd4f6e            ……(2分)

6ec8aac122bd4f6e

6ec8aac122bd4f6e                                  ………………………………(4分)

6ec8aac122bd4f6e對一切6ec8aac122bd4f6e恒成立。

6ec8aac122bd4f6e                                    ……………………………………(6分)

(Ⅱ)由6ec8aac122bd4f6e                            ………………(7分)

6ec8aac122bd4f6e

  6ec8aac122bd4f6e                                         …………………(8分)

  6ec8aac122bd4f6e

錯誤!不能通過編輯域代碼創(chuàng)建對象。6ec8aac122bd4f6e                                           ……………………(10分)

6ec8aac122bd4f6e6ec8aac122bd4f6e                                    …………………(11分)

6ec8aac122bd4f6e6ec8aac122bd4f6e

∴若使方程6ec8aac122bd4f6e有解,則6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e6ec8aac122bd4f6e          ………………(12分)

 

19.(本題12分)

解:(Ⅰ) ∵6ec8aac122bd4f6e分別是6ec8aac122bd4f6e的中點(diǎn),

6ec8aac122bd4f6e6ec8aac122bd4f6e                                  ……………………(1分)

6ec8aac122bd4f6e平面6ec8aac122bd4f6e,6ec8aac122bd4f6e平面6ec8aac122bd4f6e

6ec8aac122bd4f6e平面6ec8aac122bd4f6e                                   …………………………(2分)

6ec8aac122bd4f6e平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,6ec8aac122bd4f6e平面6ec8aac122bd4f6e

6ec8aac122bd4f6e                                          …………………………(4分)

6ec8aac122bd4f6e6ec8aac122bd4f6e的中點(diǎn),

6ec8aac122bd4f6e6ec8aac122bd4f6e的中點(diǎn).

6ec8aac122bd4f6e                               ………………………(5分)

6ec8aac122bd4f6e

∴四邊形6ec8aac122bd4f6e是平行四邊形                         …………………………(6 分)

(Ⅱ)當(dāng)6ec8aac122bd4f6e時,平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e                   …………………(8分)

6ec8aac122bd4f6e上取一點(diǎn),6ec8aac122bd4f6e連接6ec8aac122bd4f6e

6ec8aac122bd4f6e當(dāng)6ec8aac122bd4f6e時,

6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e

       6ec8aac122bd4f6e

       6ec8aac122bd4f6e

即當(dāng)6ec8aac122bd4f6e時,6ec8aac122bd4f6e,6ec8aac122bd4f6e                    ……………………(9分)

6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e平面6ec8aac122bd4f6e                                       ……………………(10分)

6ec8aac122bd4f6e

6ec8aac122bd4f6e平面6ec8aac122bd4f6e                                 ……………………………(11分)

6ec8aac122bd4f6e平面6ec8aac122bd4f6e

∴平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e                     …………………………………(12分)

 

 

 

20.(本題12分)

解:(Ⅰ) ∵6ec8aac122bd4f6e

6ec8aac122bd4f6e                           ………………………………(2分)

6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e上為減函數(shù)

6ec8aac122bd4f6e≤O在區(qū)間6ec8aac122bd4f6e上恒成立                      …………………………(3分)

6ec8aac122bd4f6e是開口向上的拋物線

6ec8aac122bd4f6e6ec8aac122bd4f6e        6ec8aac122bd4f6e6ec8aac122bd4f6e      6ec8aac122bd4f6e6ec8aac122bd4f6e

∴只需              即                               …………………………(5分)

        6ec8aac122bd4f6e6ec8aac122bd4f6e       6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e                             ………………………………………(6分)

6ec8aac122bd4f6e6ec8aac122bd4f6e                                      

6ec8aac122bd4f6e(Ⅱ)當(dāng)6ec8aac122bd4f6e時,                     

                                      

∴存在6ec8aac122bd4f6e,使得6ec8aac122bd4f6e

6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e內(nèi)有且只有一個極小值點(diǎn)                      ……………(8分)

6ec8aac122bd4f6e6ec8aac122bd4f6e                   

6ec8aac122bd4f6e當(dāng)6ec8aac122bd4f6e時                      

 

∴存在6ec8aac122bd4f6e,使得6ec8aac122bd4f6e

6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e內(nèi)有且只有一個極大值點(diǎn)                     ……………(10分)

當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e時,由(Ⅰ)可知6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e上為減函數(shù)

6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e內(nèi)沒有極值點(diǎn).

綜上可知,當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e內(nèi)的極值點(diǎn)個數(shù)為6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e內(nèi)的極值點(diǎn)個數(shù)為6ec8aac122bd4f6e          ………(12分)

 

6ec8aac122bd4f6e21.(本題14分)

解:(Ⅰ)設(shè)橢圓的長半軸長為6ec8aac122bd4f6e,短半軸長6ec8aac122bd4f6e,半焦距為6ec8aac122bd4f6e

由離心率6ec8aac122bd4f6e,得6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e            ①                                     …………………(2分)

∵直線6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e,原點(diǎn)6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為6ec8aac122bd4f6e,

6ec8aac122bd4f6e  ②                                     …………………(4分)

①代人②,解得6ec8aac122bd4f6e                            ………………………(6分)

∴橢圓的標(biāo)準(zhǔn)方程為6ec8aac122bd4f6e                        …………………………(7分)

(Ⅱ) ∵6ec8aac122bd4f6e

∴?=6ec8aac122bd4f6e

∴?=?(-)=2                                    …………………(9分)

設(shè)6ec8aac122bd4f6e,則6ec8aac122bd4f6e,即6ec8aac122bd4f6e                     ………………(10分)

6ec8aac122bd4f6e

∴?=2

同步練習(xí)冊答案