(A) (B) (C)1 (D)2 查看更多

 

題目列表(包括答案和解析)

下面(a)(b)(c)(d)為四個平面圖:

(1)數(shù)出每個平面圖的頂點數(shù)、邊數(shù)、區(qū)域數(shù)(不包括圖形外面的無限區(qū)域),并將相應結果填入表:
頂點數(shù) 邊數(shù) 區(qū)域數(shù)
(a) 4 6 3
(b) 12
(c) 6
(d) 15
(2)觀察表,若記一個平面圖的頂點數(shù)、邊數(shù)、區(qū)域數(shù)分別為E、F、G,試推斷E、F、G之間的等量關系;
(3)現(xiàn)已知某個平面圖有2009個頂點,且圍成2009個區(qū)域,試根據以上關系確定該平面圖的邊數(shù).

查看答案和解析>>

下面(a)(b)(c)(d)為四個平面圖:

(1)數(shù)出每個平面圖的頂點數(shù)、邊數(shù)、區(qū)域數(shù)(不包括圖形外面的無限區(qū)域),并將相應結果填入表:
頂點數(shù)邊數(shù)區(qū)域數(shù)
(a)463
(b)12
(c)6
(d)15
(2)觀察表,若記一個平面圖的頂點數(shù)、邊數(shù)、區(qū)域數(shù)分別為E、F、G,試推斷E、F、G之間的等量關系;
(3)現(xiàn)已知某個平面圖有2009個頂點,且圍成2009個區(qū)域,試根據以上關系確定該平面圖的邊數(shù).

查看答案和解析>>

(A)(不等式選做題)
若關于x的不等式|a|≥|x+1|+|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(幾何證明選做題)
如圖,A,E是半圓周上的兩個三等分點,直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點F,則AF的長為
2
3
3
2
3
3

(C)(坐標系與參數(shù)方程選做題) 
在已知極坐標系中,已知圓ρ=2cosθ與直線 3ρcosθ+4ρsinθ+a=0相切,則實數(shù)a=
2或-8
2或-8

查看答案和解析>>

已知復數(shù),則=

(A)            (B)         (C)1          (D)2

查看答案和解析>>

已知復數(shù),則=

(A)            (B)         (C)1          (D)2

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

B

B

C

C

D

D

D

A

A

 

二、填空題(每小題5分,共20分)

13.         14.       15. 1            16.

三、簡答題

17.解:依題記“甲答對一題”為事件A ;“乙答對一題”為事件B

2分

∴ξ的分布列:

ξ

0

1

2

P

                                                          8分

                              10分

18.解:當時,原式                              3分

時,有                             

∴原式=                           7分

時,

∴原式                                                   11分

綜上所述:                              12分

19.解:設切點(),                                              3分

∵切線與直線平行

          或                        10分

∴切點坐標(1,-8)(-1,-12)

∴切線方程:

即:                                               12分

21.解:設底面一邊長為,則另一邊長

∴高為                                    3分

由:            ∴

∵體積

                                       6分

(舍去)

只有一個極值點

,此時高1.2m,最大容積為         11分

答:高為1.2m 時體積最大,最大值為1.8              12分

22.解:假設存在

時,由即:

時,   ∴

猜想:

證明:1. 當時,已證

         2. 假設時結論成立

      

即為時結論也成立

由(1)(2)可知,對大于1的自然數(shù)n,存在,使成立                                                             12分


同步練習冊答案