設(shè)函數(shù) 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是兩兩不等的常數(shù)),則
a
f′(a)
+
b
f′(b)
+
c
f′(c)
=
 

查看答案和解析>>

設(shè)函數(shù)f(x)=cos(2x+
π
3
)+sin2x.
(1)求函數(shù)f(x)的最大值和最小正周期.
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=
1
3
,f(
C
3
)=-
1
4
,且C為非鈍角,求sinA.

查看答案和解析>>

設(shè)函數(shù)f(x)=
ax2+bx+c
(a<0)
的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為( 。
A、-2B、-4
C、-8D、不能確定

查看答案和解析>>

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π
8

(1)求φ;
(2)若函數(shù)y=2f(x)+a,(a為常數(shù)a∈R)在x∈[
11π
24
,
4
]
上的最大值和最小值之和為1,求a的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=
x-3,x≥10
f(x+5),x<10
,則f(5)=
 

查看答案和解析>>

 

一、選擇題(每小題5分,共60分)

2,4,6

二、填空題(每小題4分,共16分)

20080924

三、解答題:(本大題共6小題,共74分)

17.解:(Ⅰ)∵

  

∴函數(shù)的最小正周期  

(Ⅱ)∵,  ∴  

  

  

∴函數(shù)時(shí)的值域?yàn)閇-1,2]  

18.解:(Ⅰ)記“任取2個(gè)乒乓球,恰好取得1個(gè)黃色乒乓球”為事件A,則

    

(Ⅱ)記“第一次取得白色乒乓球時(shí),恰好已取出1個(gè)黃色乒乓球”為事件B;記“第一次取得白色乒乓球時(shí),恰好已取出2個(gè)黃色乒乓球”為事件C. 則

    

   

∵事件B與事件C是互斥事件,

∴第一次取得白色乒乓球時(shí),已取出的黃色乒乓球個(gè)數(shù)不少于1個(gè)的概率為

P(B+C)=P(B)+P(C)=   

19.解:(1)∵SD⊥AD,SD⊥AB,AD∩AB=A∴SD⊥平面ABCD,

又∵SD平面SBD,  ∴平面SDB⊥平面ABCD。

   (2)由(1)知平面SDB⊥平面ABCD,

BD為平面SDB與平面ABCD的交線,過點(diǎn)A作AE⊥DB于E,則AE⊥平面SDB,

由三垂線定理的逆定理得 EF⊥SB,

∴∠AFE為二面角A―SB―D的平面角。

在矩形ABCD中,設(shè)AD=a,則,

在Rt△SBC中,

而在Rt△SAD中,SA=2a,又AB=2a,∴SB2=SA2+AB2,

即△SAB為等腰直角三角形,且∠SAB為直角,

故二面角A―SB―D的大小為  

20.解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意

 

   

   (Ⅱ)∵  

 

∴數(shù)列{bn}的前n項(xiàng)和

      

 

21.解:(Ⅰ)由題,得,設(shè)

  …………①

在雙曲線上,則   …………②

聯(lián)立①、②,解得    

由題意,

∴點(diǎn)T的坐標(biāo)為(2,0)  

   (Ⅱ)設(shè)直線A1P與直線A2Q的交點(diǎn)M的坐標(biāo)為(x,y)

由A1、P、M三點(diǎn)共線,得

   …………③ 

由A2、Q、M三點(diǎn)共線,得

   …………④

聯(lián)立③、④,解得    

在雙曲線上,

∴軌跡E的方程為 

22.解:(Ⅰ)設(shè)P(x,y)是函數(shù)圖象上的任意一點(diǎn),它在函數(shù)圖象上的對(duì)應(yīng)點(diǎn),則由平移公式,得  

    ∴   代入函數(shù)中,得

       

    ∴函數(shù)的表達(dá)式為  

  (Ⅱ)函數(shù)的對(duì)稱軸為

①當(dāng)時(shí),函數(shù)在[]上為增函數(shù),

   

②當(dāng)時(shí),

   

③當(dāng)時(shí),函數(shù)在[]上為減函數(shù),

,應(yīng)舍去     

綜上所述,有   

 


同步練習(xí)冊(cè)答案