21.如圖.已知線段|AB|=4.動圓與線段AB切于點(diǎn)C.且|AC|-|BC|=2.過點(diǎn)A.B分別作⊙的切線.兩切線相交于P.且P.均在AB的同側(cè). ⑴建立適當(dāng)坐標(biāo)系.當(dāng)位置變化時(shí).求動點(diǎn)P的軌跡E的方程, ⑵過點(diǎn)B作直線交曲線E于點(diǎn)M.N.求△AMN的面積的最小值. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖:已知線段AB=4,動圓O1與線段AB相切于點(diǎn)C,且AC-BC=2
2
,過點(diǎn)A,B分別作⊙O1的切線,兩切線相交于點(diǎn)P,且P、O1均在AB的同側(cè).
(Ⅰ)建立適當(dāng)坐標(biāo)系,當(dāng)O1位置變化時(shí),求動點(diǎn)P的軌跡E方程;
(Ⅱ)過點(diǎn)B作直線交曲線E于點(diǎn)M、N,求△AMN面積的最小值.

查看答案和解析>>

如圖:已知線段AB=4,動圓O1與線段AB相切于點(diǎn)C,且AC-BC=2
2
,過點(diǎn)A,B分別作⊙O1的切線,兩切線相交于點(diǎn)P,且P、O1均在AB的同側(cè).
(Ⅰ)建立適當(dāng)坐標(biāo)系,當(dāng)O1位置變化時(shí),求動點(diǎn)P的軌跡E方程;
(Ⅱ)過點(diǎn)B作直線交曲線E于點(diǎn)M、N,求△AMN面積的最小值.

查看答案和解析>>

如圖,已知圓C:(x+1)2+y2=r2(r為常數(shù),且r>2),定點(diǎn)B(1,0),A是圓C上的動點(diǎn),直線AC與線段AB的垂直平分線l相交于點(diǎn)M.當(dāng)點(diǎn)A在圓C上移動一周時(shí),點(diǎn)M的軌跡記為曲線F.

(1)求曲線F的方程;

(2)求證:直線l與曲線F只有一個(gè)公共點(diǎn)M;

(3)若r=4,點(diǎn)M在第一象限,且,記直線l與直線CM的夾角為,

求tan

查看答案和解析>>

精英家教網(wǎng)如圖所示,為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過Q點(diǎn),動點(diǎn)P在曲線C上運(yùn)動且保持|PA|+|PB|的值不變.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)過D點(diǎn)且與AB不垂直的直線l與曲線C相交于不同的兩點(diǎn)M、N,問是否存在這樣的直線l使
OM
+
ON
AQ
平行,若平行,求出直線l的方程,若不平行,請說明理由.

查看答案和解析>>

已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個(gè)軸截面.動點(diǎn)M從點(diǎn)B出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn)D,其距離最短時(shí)在側(cè)面留下的曲線Γ如圖所示.將軸截面ABCD繞著軸OO1逆時(shí)針旋轉(zhuǎn)θ(0<θ<π)后,邊B1C1與曲線Γ相交于點(diǎn)P.
(1)求曲線Γ長度;
(2)當(dāng)θ=
π
2
時(shí),求點(diǎn)C1到平面APB的距離;
(3)是否存在θ,使得二面角D-AB-P的大小為
π
4
?若存在,求出線段BP的長度;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案