相關(guān)習(xí)題
 0  203270  203278  203284  203288  203294  203296  203300  203306  203308  203314  203320  203324  203326  203330  203336  203338  203344  203348  203350  203354  203356  203360  203362  203364  203365  203366  203368  203369  203370  203372  203374  203378  203380  203384  203386  203390  203396  203398  203404  203408  203410  203414  203420  203426  203428  203434  203438  203440  203446  203450  203456  203464  266669 

科目: 來源: 題型:

計算:8
2
3
=
 

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=
π
2
-cosx的所有正的極小值點從小到大排成的數(shù)列為{xn}.
(1)求數(shù)列{xn};
(2)設(shè){xn}的前n項和為Sn,求tanSn

查看答案和解析>>

科目: 來源: 題型:

“若存在一條與函數(shù)y=f(x)的圖象有兩個不同交點P(x1,y1),Q(x2,y2)的直線,使y=f(x)在x=
x1+x2
2
處的切線與此直線平行”,則稱這樣的函數(shù)y=f(x)為“hold函數(shù)”;下列函數(shù):
①y=
1
x
;②y=x2(x>0);③y=
1-x2
;④y=lnx;
其中為“hold函數(shù)”的是( 。
A、①②④B、②③
C、③④D、①③④

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=alnx-x2,a∈R,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥1時,f(x)≤0恒成立,求實數(shù)a的取值范圍;
(Ⅲ)設(shè)a>0,若A(x1,y1),B(x2,y2)為曲線y=f(x)上的兩個不同點,滿足0<x1<x2,且?x3
(x1,x2),使得曲線y=f(x)在x=x3處的切線與直線AB平行,求證:x3
x1+x2
2

查看答案和解析>>

科目: 來源: 題型:

已知單位圓上一點P(-
3
2
,y),設(shè)以O(shè)P為終邊的角為θ(0<θ<2π),求θ的正弦值、余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知|
a
|=13,|
b
|=19,|
a
+
b
|=24,則|
a
-
b
|=
 

查看答案和解析>>

科目: 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=3,E為DC邊的中點,沿AE將AD折起,使二面角D-AE-B為60°,則異面直線BC與AD所成的角余弦值為(  )
A、
7
13
B、
3
3
C、
2
3
D、
6
13

查看答案和解析>>

科目: 來源: 題型:

雙曲線
x2
16
-
y2
9
=1,A(8,4),過A作直線l交雙曲線于P,Q兩點,A恰為P,Q的中點,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是線段EF的中點
(1)求證:AM∥平面BDE;
(2)求證:AM⊥平面BDF;
(3)求三棱錐M-BDE的體積VM-BDE

查看答案和解析>>

科目: 來源: 題型:

已知⊙F1:(x+1)2+y2=
1
9
,⊙F2:(x-1)2+y2=
121
9
,橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2分別為橢圓C的兩個焦點,設(shè)P為橢圓C上一點,存在以P為圓心的⊙P與⊙F1外切,與⊙F2內(nèi)切.
(1)求橢圓C的方程;
(2)過點F2作斜率為k的直線與橢圓C相交于A,B兩點,與y軸相交于點D,若
DA
=2
AF2
,
DB
BF2
,求λ的值.
(3)已知真命題:“如果點T(x0,y0)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)上,那么過點T的橢圓的切線方程為
x0x
a2
+
y0y
b2
=1
.”利用上述結(jié)論,解答下面的問題:
已知點Q是直線l:x+2y=8上的動點,過點Q作橢圓C的兩條切線QM、QN,M、N為切點,問直線MN是否過定點?若是,請求出定點坐標(biāo);若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案