已知橢圓的對稱軸為坐標軸,且拋物線的焦點是橢圓的一個焦點,又點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的方向向量為,若直線與橢圓交于兩點,求面積的最大值.
解: (Ⅰ)由已知拋物線的焦點為,故設橢圓方程為.
將點代入方程得,整理得,
解得(舍).
故所求橢圓方程為. -------------------(6分)
(Ⅱ)設直線的方程為,設
代入橢圓方程并化簡得,              
,可得 .        ( )
,
.                          
又點的距離為,                           
,
當且僅當,即時取等號(滿足式)
所以面積的最大值為. ----------------(12分)    
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為原點,從橢圓 + =1的左焦點引圓的切線交橢圓于點,切點位于之間,為線段的中點,則的值為_______________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
函數(shù)定義在區(qū)間[a, b]上,設“”表示函數(shù)在集合D上的最小值,“”表示函數(shù)在集合D上的最大值.現(xiàn)設,
,
若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)
為區(qū)間上的“第k類壓縮函數(shù)”.

(Ⅰ) 若函數(shù),求的最大值,寫出的解析式;
(Ⅱ) 若,函數(shù)上的“第3類壓縮函數(shù)”,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知過橢圓C:=1(a>b>0)右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點;又函數(shù)圖象的一條對稱軸的方程是.
(1)求橢圓C的離心率e與直線AB的方程;
(2)對于任意一點M∈C,試證:總存在角θ(θ∈R)使等式+成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點,橢圓的右準線與x軸相交于點D,右焦點F到上頂點的距離為
(1)求橢圓的方程;
(2)是否存在過點F且與x軸不垂直的直線與橢圓交于A、B兩點,使得?若存在,求出直線;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.已知為正數(shù),,其中是常數(shù),且的最小值是,滿足條件的點是橢圓一弦的中點,則此弦所在的直線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的長軸為A1A2,B為短軸的一個端點,若∠A1BA2=120°,則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點在橢圓上,則的最大值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的短軸長是(  )
A.B. 2C. 2D. 4

查看答案和解析>>

同步練習冊答案