如圖,四棱錐G—ABCD中,ABCD是正方形,且邊長為2a,面ABCD⊥面ABG,AG=BG。
(1)畫出四棱錐G—ABCD的三視圖;
 
(2)在四棱錐G—ABCD中,過點B作平面
AGC的垂線,若垂足H在CG上,
求證:面AGD⊥面BGC
(3)在(2)的條件下,求三棱錐D—ACG的體積
及其外接球的表面積。
(1)三視圖(見右圖)


(2)ABCD是正方形  ∴  BC⊥AB
∵面ABCD⊥面ABG  ∴  BC⊥面ABG
∵AG面ABG    ∴  BC⊥AG
又  BH⊥面AGC     ∴  BH⊥AG
∵ BCBH="B    "  ∴  AG⊥面AGD
∴面AGD⊥面BGC
(3)由(2)知  AG⊥面BGC   ∴AG⊥BG  又AG=BG
∴△ABG是等腰Rt△,取AB中點E,
連結GE,則GE⊥AB
∴ GE⊥面ABCD  
  又   ∴取AC中點M,則    因此:
   即點M是三棱錐D—ACG的外接球的球心,
半徑為   ∴ 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

一個多面體的直觀圖及三視圖如圖所示(其中E、F分別是PB、AD的中點).

(Ⅰ)求證:EF⊥平面PBC;
(Ⅱ)求三棱錐B—AEF的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直角梯形中,,  作,垂足為,分別為的中點,現(xiàn)將沿折疊使二面角的平面角的正切值為.
(1)求證:平面;
(2)求異面直線所成的角的余弦值;
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體中,分別是棱、的中點.
試畫出平面與平面的交線.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為互不重合的平面,為互不重合的直線,給出下列四個命題:]
①若
②若,則;
③若  
④若   
其中所有正確命題的序號是(    )
A.①②B.①③C.③④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點,圓柱底面半徑為1,高為2,若從M點繞圓柱體的側面到達N,最短路程為             

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果一個幾何體的三視圖如圖所示(單位長度:cm),
8.
則此幾何體的表面積是( 。
A.cmB.cm
C. 96 cmD.112 cm

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有下列四個命題:
①圓臺的任意兩條母線的延長線,可能相交,也可能不相交;②圓錐的母線都交于一點;③圓柱的母線都互相平行.其中正確的命題有____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,EPC的中點.求證:PA∥平面EDB.

查看答案和解析>>

同步練習冊答案