【題目】(本小題滿分14分))
某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿場售價與上市時間的關系用圖一的一條折線表示;西紅柿的種植成本與上市時間的關系用圖二的拋物線段表示。
(Ⅰ)寫出圖一表示的市場售價與時間的函數(shù)關系式;寫出圖二表示的種植成本與上市時間的函數(shù)關系式;
(Ⅱ)假如設定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?(注:市場售價和種植成本的單位:元/102㎏,時間單位:天)
【答案】(1)
(2)從二月一日開始的第50天時,上市的西紅柿純收益最大
【解析】
試題分析:本題是函數(shù)應用題,(1)函數(shù)關系式形式題中已經(jīng)給出,是分估函數(shù),圖象是兩段線段,一次函數(shù)的形式,分別求出即可,是拋物線,二次函數(shù),解析式可設為一般式或頂點式;(2)由(1)可得純收益,仍是分段函數(shù),其最大值要分段求出,再取最大的一個.
試題解析:(1)由圖1可得市場售價與時間的函數(shù)關系為
由圖2可得種植成本與時間的函數(shù)關系為
(2)設時刻的純收益為,則由題意得,
即
當時,配方整理,得
∴當時,取得區(qū)間上的最大值100;
當時,配方整理,得
∴當時,取得區(qū)間上的最大值87.5;
綜上可知在區(qū)間上可以取到最大值100,此時,,即從二月一日開始的第50天時,上市的西紅柿收益最大100。
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,它的前n項和為Sn,若S5=70,且a2,a7,a22成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列的前n項和為Tn,求證: ≤Tn<.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個圓錐的底面半徑為2,高為6,在其中有一個高為x的內(nèi)接圓柱.
(1)用x表示圓柱的軸截面面積S;
(2)當x為何值時,S最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題 “存在”,命題:“曲線表示焦點在軸上的橢圓”,命題 “曲線表示雙曲線”
(1)若“且”是真命題,求實數(shù)的取值范圍;
(2)若是的必要不充分條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直線與圓O: 且與橢圓C: 相交于A,B兩點
(1)若直線恰好經(jīng)過橢圓的左頂點,求弦長AB;
(2)設直線OA,OB的斜率分別為k1,k2,判斷k1·k2是否為定值,并說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;
(2)若函數(shù)的圖象上的所有點的橫坐標伸長到原來的倍,所得的圖象與直線交點的橫坐標由小到大依次是,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(14分)關于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)
(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;
(2)解關于x的不等式ax2+(a﹣2)x﹣2≥0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐S﹣ABC的各頂點都在一個半徑為r的球面上,且SA=SB=SC=1,AB=BC=AC=,則球的表面積為( 。
A. 12π B. 8π C. 4π D. 3π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設cn=,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com