雙曲線
x2
3
-y2=1
的焦點坐標(biāo)是(  )
A.
2
,0)
B.(0,±
2
)
C.(±2,0)D.(0,±2)
∵雙曲線方程為
x2
3
-y2=1

∴雙曲線的焦點在x軸上,且a2=3,b2=1
由此可得c=
a2+b2
=2,
∴該雙曲線的焦點坐標(biāo)為(±2,0)
故選:C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

x2
m
-
y2
n
=1(其中m,n∈{-2,-5,4})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個,則此方程是焦點在y軸上的雙曲線方程的概率為(  )
A.
1
2
B.
4
7
C.
2
3
D.
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F,右準(zhǔn)線l與兩條漸近線交于P,Q兩點,如果△PQF是等邊三角形,則雙曲線的離心率e的值為( 。
A.
1
2
B.
3
2
C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以雙曲線
x2
9
-
y2
16
=1的右焦點為圓心,且與兩條漸近線相切的圓的方程是( 。
A.(x+5)2+y2=9B.(x+5)2+y2=16C.(x-5)2+y2=9D.(x-5)2+y2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線以y=±2x為漸近線,且A(1,0)為一個頂點,則雙曲線的方程為( 。
A.
x2
4
-y2=1
B.y2-
x2
4
=1
C.x2-
y2
4
=1
D.
y2
4
-x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線
x2
16
-
y2
9
=1
的左焦點F1的直線與雙曲線的左支交于A,B兩點,若|AB|=4,則△ABF2(F2為右焦點)的周長是(  )
A.28B.24C.20D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
9
-
y2
4
=1
的漸近線方程是( 。
A.y=±
2
3
x
B.y=±
3
2
x
C.y=±
4
9
x
D.y=±
9
4
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線
x2
m
-y2=1
的一條漸近線和圓x2+y2-4x+3=0相切,則該雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a,b>0)
的離心率e=2,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)滿足(  )
A.必在圓x2+y2=2內(nèi)B.必在圓x2+y2=2外
C.必在圓x2+y2=2上D.以上三種情形都有可能

查看答案和解析>>

同步練習(xí)冊答案