【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知asinA=4bsinB,ac= (a2﹣b2﹣c2).(13分)
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B﹣A)的值.

【答案】(Ⅰ)解:由 ,得asinB=bsinA,
又asinA=4bsinB,得4bsinB=asinA,
兩式作比得: ,∴a=2b.
,得
由余弦定理,得 ;
(Ⅱ)解:由(Ⅰ),可得 ,代入asinA=4bsinB,得
由(Ⅰ)知,A為鈍角,則B為銳角,

于是 ,

【解析】(Ⅰ)由正弦定理得asinB=bsinA,結(jié)合asinA=4bsinB,得a=2b.再由 ,得 ,代入余弦定理的推論可求cosA的值;
(Ⅱ)由(Ⅰ)可得 ,代入asinA=4bsinB,得sinB,進一步求得cosB.利用倍角公式求sin2B,cos2B,展開兩角差的正弦可得sin(2B﹣A)的值.
【考點精析】關(guān)于本題考查的兩角和與差的正弦公式和二倍角的余弦公式,需要了解兩角和與差的正弦公式:;二倍角的余弦公式:才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)定義域為的單調(diào)函數(shù),對于任意的,都有,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺舉辦青年歌手大獎賽,有十名評委打分,已知甲、乙兩名選手演唱后的得分如莖葉圖如圖所示.

(1)從統(tǒng)計學的角度,你認為甲與乙比較,演唱水平怎樣?

(2)現(xiàn)場有三名點評嘉賓A,B,C,每位選手可以從中選兩位接受其指導,若選手選每位點評嘉賓的可能性相等,求甲、乙兩名選手選擇的點評嘉賓恰有一人重復的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,⊙O過平行四邊形ABCT的三個頂點B,C,T,且與AT相切,交AB的延長線于點D.

(1)求證:AT2=BTAD;
(2)E、F是BC的三等分點,且DE=DF,求∠A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù):

3

4

5

6

2.5

3

4

4.5

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標準煤?

(參考:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù),).

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)若為整數(shù),,且當時,恒成立,其中的導函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:
①函數(shù)y= 為奇函數(shù);
②y=2 的值域是(1,+∞)
③函數(shù)y= 在定義域內(nèi)是減函數(shù);
④若函數(shù)f(2x)的定義域為[1,2],則函數(shù)y=f( )定義域為[4,8]
其中正確命題的序號是 . (填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱ABCA1B1C1的所有棱長都為2,D為CC1的中點.

(1)求證:AB1⊥平面A1BD;

(2)求二面角AA1DB的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】6男4女站成一排,求滿足下列條件的排法共有多少種.(列出算式即可)

(1)任何2名女生都不相鄰,有多少種排法?

(2)男甲不在首位,男乙不在末位,有多少種排法?

(3)男生甲、乙、丙順序一定,有多少種排法?

(4)男甲在男乙的左邊(不一定相鄰)有多少種不同的排法?

查看答案和解析>>

同步練習冊答案