【題目】設(shè)數(shù)列{xn}的前n項和為Sn , 且4xn﹣Sn﹣3=0(n∈N*);
(1)求數(shù)列{xn}的通項公式;
(2)若數(shù)列{yn}滿足yn+1﹣yn=xn(n∈N*),且y1=2,求滿足不等式 的最小正整數(shù)n的值.

【答案】
(1)解:∵4xn﹣Sn﹣3=0(n∈N*),∴n=1時,4x1﹣x1﹣3=0,解得x1=1.

n≥2時,由Sn=4xn﹣3,∴xn=Sn﹣Sn1=4xn﹣3﹣(4xn1﹣3),∴xn= ,∴數(shù)列{xn},是等比數(shù)列,公比為

∴xn=


(2)解:yn+1﹣yn=xn= ,且y1=2,

∴yn=y1+(y2﹣y1)+(y3﹣y2)+…+(yn﹣yn1

=2+1+ + +…+ =2+ =3× ﹣1.當(dāng)n=1時也滿足.

∴yn=3× ﹣1.

不等式 ,化為: = ,∴n﹣1>3,解得n>4.

∴滿足不等式 的最小正整數(shù)n的值為5


【解析】(1)由4xn﹣Sn﹣3=0(n∈N*),可得n=1時,4x1﹣x1﹣3=0,解得x1 . n≥2時,由Sn=4xn﹣3,可得xn=Sn﹣Sn1 , 利用等比數(shù)列的通項公式即可得出.(2)yn+1﹣yn=xn= ,且y1=2,利用yn=y1+(y2﹣y1)+(y3﹣y2)+…+(yn﹣yn1)與等比數(shù)列的求和公式即可得出yn . 代入不等式 ,化簡即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,2,則輸出v的值為(
A.66
B.33
C.16
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (a為常數(shù),a≠0).
(1)當(dāng)a=1時,求函數(shù)f(x)在點(diǎn)(3,f(3))的切線方程
(2)求f(x)的單調(diào)區(qū)間;
(3)若f(x)在x0處取得極值,且 ,而f(x)≥0在[e+2,e3+2]上恒成立,求實數(shù)a的取值范圍.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1=an﹣2an+1an , an≠0且a1=1
(1)求證:數(shù)列 是等差數(shù)列,并求出{an}的通項公式;
(2)令 ,求數(shù)列{bn}的前2n項的和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的高一、高二、高三共有學(xué)生1350人,其中高一500人,高三比高二少50人,為了解該校學(xué)生健康狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有高一學(xué)生120人,則該樣本中的高二學(xué)生人數(shù)為(
A.80
B.96
C.108
D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣5,g(x)=4x﹣x2 , 給下列三個命題: p1:若x∈R,則f(x)f(﹣x)的最大值為16;
p2:不等式f(x)<g(x)的解集為集合{x|﹣1<x<3}的真子集;
p3:當(dāng)a>0時,若x1 , x2∈[a,a+2],f(x1)≥g(x2)恒成立,則a≥3,
那么,這三個命題中所有的真命題是(
A.p1 , p2 , p3
B.p2 , p3
C.p1 , p2
D.p1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系,直線l的參數(shù)方程為 ,(t為參數(shù)),曲線C1的方程為ρ(ρ﹣4sinθ)=12,定點(diǎn)A(6,0),點(diǎn)P是曲線C1上的動點(diǎn),Q為AP的中點(diǎn).
(1)求點(diǎn)Q的軌跡C2的直角坐標(biāo)方程;
(2)直線l與直線C2交于M,N兩點(diǎn),若|MN|≥2 ,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,分別在x軸與直線 上從左向右依次取點(diǎn)Ak、Bk , k=1,2,…,其中A1是坐標(biāo)原點(diǎn),使△AkBkAk+1都是等邊三角形,則△A10B10A11的邊長是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,其中 ,若輸出的 ,則判斷框內(nèi)應(yīng)填入的條件為(
A.n<2017
B.n≤2017
C.n>2017
D.n≥2017

查看答案和解析>>

同步練習(xí)冊答案