【題目】已知橢圓: 的左,右焦點(diǎn)分別為, ,離心率為, 是橢圓上的動(dòng)點(diǎn),當(dāng)時(shí), 的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)的直線交橢圓于, 兩點(diǎn),求面積的最大值.
【答案】(1) .
(2) .
【解析】試題分析:(1)設(shè)橢圓的半焦距為,根據(jù)離心率和在中余弦定理,列出方程,求得,即可得到橢圓的方程;
(2)設(shè)直線的方程為,聯(lián)立方程組,求得則,利用弦長(zhǎng)公式求得,在由點(diǎn)到直線的距離公式,求得點(diǎn)到直線的距離為,即可得到三角形面積的表達(dá),再利用基本不等式,即可求解面積的最大值.
試題解析:
(1)設(shè)橢圓的半焦距為,
因?yàn)闄E圓的離心率為,
所以.①
在中, ,由余弦定理,
得,
得,
得,
即,
所以.
因?yàn)?/span>的面積,
所以,即.②
又,③
由①②③,解得, , .
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè)直線的方程為, , ,
聯(lián)立
得,
由,得.
則, .
由弦長(zhǎng)公式,得 .
又點(diǎn)到直線的距離為,
所以 .
令,則.
所以 ,
當(dāng)且僅當(dāng),即, 時(shí)取等號(hào).
所以面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;
(1)將表示為的函數(shù);
(2)若,求總用氧量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)若關(guān)于的方程有三個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)滿足
(1)求函數(shù)的解析式;
(2)令
若函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
求函數(shù)在的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>上的奇函數(shù),且.
(1)用定義證明:函數(shù)在上是增函數(shù);
(2)若實(shí)數(shù)t滿足求實(shí)數(shù)t的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)
(1)若,用“五點(diǎn)法”在給定的坐標(biāo)系中,畫出函數(shù)在上的圖象.
(2)若偶函數(shù),求:
(3)在(2)的前提下,將函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍,縱坐標(biāo)不變,再向上平移一個(gè)單位得到函數(shù)的圖象,求的對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)φ)﹣cos(ωx+φ)(),x=0和x是函數(shù)的y=f(x)圖象的兩條相鄰對(duì)稱軸.
(1)求f()的值;
(2)將y=f(x)的圖象向右平移個(gè)單位后,再將所得的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求y=g(x)的單調(diào)區(qū)間,并求其在[]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在直線.
(1)若圓與軸的正半軸相切,且該圓截軸所得弦的長(zhǎng)為,求圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,直線與圓交于兩點(diǎn),,若以為直徑的圓過(guò)坐標(biāo)原點(diǎn),求實(shí)數(shù)的值;
(3)已知點(diǎn),圓的半徑為3,且圓心在第一象限,若圓上存在點(diǎn),使(為坐標(biāo)原點(diǎn)),求圓心的縱坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com