精英家教網 > 高中數學 > 題目詳情

【題目】已知是等差數列,滿足,數列滿足,且為等比數列.

(1)求數列的通項公式;

(2)求數列的前n項和.

【答案】(1) (2)n(n+1)+2n-1

【解析】試題分析:(1)將等差數列的已知條件化簡為首項和公差表示,求出基本量得到通項公式,借助于為等比數列,求出通項公式bn-an=(b1-a1)qn-1=2n-1,進而得到通項;(2)根據數列的通項公式可知求和時采用分組求和,分為等差等比數列各一組分別求和

試題解析:

(1)設等差數列的公差為d,由題意得d= ,所以

設等比數列 的公比為q,由題意得 所以bn-an=(b1-a1)qn-1=2n-1,從而 .

(2)由(1)可知,數列 的前n項n(n+1),數列的前n項和為2n-1 所以數列的前n項和為n(n+1)+2n-1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數, ).

(Ⅰ)求函數的單調增區(qū)間;

(Ⅱ)當時,記,是否存在整數,使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】Sn為數列{an}的前n項和,Sn=2an﹣2(nN+

(1)求{an}的通項公式;

(2)若bn=3nan,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 ,與軸不重合的直線經過左焦點,且與橢圓相交于 兩點,弦的中點為,直線與橢圓相交于 兩點.

(Ⅰ)若直線的斜率為1,求直線的斜率;

(Ⅱ)是否存在直線,使得成立?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點

(1)若甲乙都以每分鐘的速度從點出發(fā)在各自的大道上奔走,到大道的另一端

時即停,乙比甲遲2分鐘出發(fā),當乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;

(2)設,乙丙之間的距離是甲乙之間距離的2倍,且,請將甲

乙之間的距離表示為θ的函數,并求甲乙之間的最小距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|ax+1|+|2x﹣1|(a∈R).

(1)當a=1時,求不等式f(x)≥2的解集;

(2)若f(x)≤2xx[,1]時恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,甲船以每小時 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里,當甲船航行20分鐘到達A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距 海里,問乙船每小時航行多少海里?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 且cos( )= ,sin 求cos(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線 恒過定點,圓經過點和點,且圓心在直線上.

(1)求定點的坐標;

(2)求圓的方程;

(3)已知點為圓直徑的一個端點,若另一個端點為點,問:在軸上是否存在一點,使得為直角三角形,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案