精英家教網 > 高中數學 > 題目詳情

【題目】Sn為數列{an}的前n項和,Sn=2an﹣2(nN+

(1)求{an}的通項公式;

(2)若bn=3nan,求數列{bn}的前n項和Tn

【答案】(1) an=2n;(2) Tn=6+3(n﹣1)2n+1.

【解析】試題分析:(1)根據數列{an}的求和公式,利用an=Sn-Sn﹣1得到an=2an﹣1,進而得到{an}的通項公式;

(2)利用錯位相減的原理,即可得到結果。

試題解析:

(1)依題意,Sn=2an﹣2,Sn﹣1=2an﹣1﹣2(n≥2),

兩式相減得:an=2an﹣1,又∵S1=2a1﹣2,即a1=2,

∴數列{an}是首項、公比均為2的等比數列,∴an=2n;

(2)由(Ⅰ)得bn=3n×2n

Tn=3×2+6×22+9×23+…+3n×2n,

2Tn=3×22+6×23+…+3(n﹣1)×2n+3n×2n+1,

兩式相減得:﹣Tn=3(2+22+23+…+2n)﹣3n×2n+1=33n×2n+1

=﹣3(n﹣1)2n+1﹣6,∴Tn=6+3(n﹣1)2n+1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知α∈(0, ),β∈(0,π),且tan(α﹣β)= ,tanβ=﹣
(1)求tanα;
(2)求2α﹣β的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.

(1)求函數f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,且a2+bc=b2+c2
(1)求∠A的大;
(2)若b=2,a= ,求邊c的大。
(3)若a= ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,一直線過點 ,

①若直線在兩坐標軸上截距之和為12,求直線的方程;

②若直線 軸正半軸交于 兩點,當面積為 時求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓經過點、,并且直線平分圓.

)求圓的方程;

)若過點,且斜率為的直線與圓有兩個不同的交點.

)求實數的取值范圍;

)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中實數

(Ⅰ)判斷是否為函數的極值點,并說明理由;

(Ⅱ)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是等差數列,滿足,數列滿足,且為等比數列.

(1)求數列的通項公式;

(2)求數列的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(m,cos2x), =(sin2x,n),設函數f(x)= ,且y=f(x)的圖象過點( , )和點( ,﹣2). (Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調增區(qū)間.

查看答案和解析>>

同步練習冊答案