(本小題14分)已知直線經(jīng)過(guò)橢圓的左頂點(diǎn)和上頂點(diǎn),橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn).

(1)求橢圓的方程;    

(2)求證:直線與直線斜率的乘積為定值;

(3)求線段的長(zhǎng)度的最小值.

 

【答案】

(1)由已知得,橢圓的左頂點(diǎn)為上頂點(diǎn)為

    故橢圓的方程為                   ……………………………4分

(2)設(shè)直線AS的斜率,直線BS的斜率的乘積為=………………..8分

(3)解法一:直線AS的斜率顯然存在,且>0,故可設(shè)直線的方程為

從而   由(2)知直線BS的方程為

從而,,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立

線段的長(zhǎng)度取最小值   ……………………………………………14分

解法二:直線AS的斜率顯然存在,且,故可設(shè)直線的方程為

從而        由0      

設(shè),從而                       

 

   又    當(dāng)且僅當(dāng),即時(shí)等號(hào)成立

時(shí),線段的長(zhǎng)度取最小值   ………………………14分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題14分)已知圓點(diǎn),過(guò)點(diǎn)作圓的切線為切點(diǎn).

(1)求所在直線的方程;

(2)求切線長(zhǎng);

(3)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市高三第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)

已知等比數(shù)列滿足,且的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,,求使  成立的正整數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市高新區(qū)高三2月月考理科數(shù)學(xué)試卷(解析版 題型:解答題

(本小題14分)已知函數(shù),設(shè)。

(Ⅰ)求F(x)的單調(diào)區(qū)間;

(Ⅱ)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率 恒成立,求實(shí)數(shù)的最小值。

(Ⅲ)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說(shuō)名理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年陜西省高三上學(xué)期月考理科數(shù)學(xué) 題型:解答題

(本小題14分)已知函數(shù)的圖像與函數(shù)的圖像關(guān)于點(diǎn)

 

對(duì)稱

(1)求函數(shù)的解析式;

(2)若,在區(qū)間上的值不小于6,求實(shí)數(shù)a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省高三2月月考數(shù)學(xué)理卷 題型:解答題

(本小題14分)

已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:

,,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對(duì)任意的成立,則稱函數(shù)上的“k階收縮函數(shù)”

(1)若,試寫(xiě)出的表達(dá)式;

(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,

如果是,求出對(duì)應(yīng)的k,如果不是,請(qǐng)說(shuō)明理由;

已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案