方程(x-
-y2+2y+8
x-y
=0表示的曲線為( 。
A.一條直線和一個圓B.一條射線與半圓
C.一條射線與一段劣弧D.一條線段與一段劣弧
∵(x-
-y2+2y+8
x-y
=0,
∴x=
-y2+2y+8
x-y
=0(-2≤y≤4),
∴x2+(y-1)2=9(x≥0)或x=y(-2≤y≤4).
故選D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

判斷圓C1:x2+y2-2x-6y-26=0與圓C2:x2+y2-4x+2y+4=0?的公切線條數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

兩個圓C1:x2+y2-4y=0與圓C2:x2+8x+y2+7=0的位置關(guān)系是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

圓(x-3)2+(y+2)2=1與圓(x-7)2+(y-1)2=36的位置關(guān)系是(  )
A.相切B.相離C.相交D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程(x-2)2+(y+2)2=0表示的曲線是( 。
A.圓B.兩條直線C.一個點D.兩個點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在同一坐標系中,方程
x2
a2
+
y2
b2
=1
與ax+by2=0(a>b>0)的曲線大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點A(0,1),B(0,-1),C(1,0),動點P滿足:
AP
BP
=k|
PC
|2
(1)求動點P的軌跡方程,并說明方程表示的曲線類型;
(2)當k=2,求|2
AP
+
BP
|的最大,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設過點P(x,y)的直線分別與x軸和y軸交于A,B兩點,點Q與點P關(guān)于y軸對稱,O為坐標原點,若
BP
=3
PA
OQ
AB
=4

(1)求點P的軌跡M的方程;
(2)過F(2,0)的直線與軌跡M交于A,B兩點,求
FA
FB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一動圓與已知圓O1(x+2)2+y2=1外切,與圓O2(x-2)2+y2=49內(nèi)切,
(1)求動圓圓心的軌跡方程C;
(2)已知點A(2,3),O(0,0)是否存在平行于OA的直線l與曲線C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案