【題目】已知函數(shù).

(1)當時,求函數(shù)的最值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)試說明是否存在實數(shù)使的圖象與無公共點.

【答案】(1)最小值為 ;(2)見解析;(3)見解析.

【解析】

1)利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,再根據(jù)單調(diào)性確定函數(shù)最值,(2)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)零點分類討論,最后根據(jù)導(dǎo)函數(shù)符號確定單調(diào)性,(3)先求函數(shù)最小值,再利用導(dǎo)數(shù)求最小值的最大值,最后與比較大小即得結(jié)果.

(1)函數(shù)的定義域是.

時,,所以為減函數(shù),

為增函數(shù),所以函數(shù)的最小值為.

(2),

時,則,恒成立,所以的增區(qū)間為.

,則,故當,

時,,

所以的減區(qū)間為的增區(qū)間為.

(3)時,由(2)知的最小值為,

,

,所以上單調(diào)遞減,

所以,則,

因此存在實數(shù)使的最小值大于

故存在實數(shù)使的圖象與無公共點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在銳角中,角,,所對的邊分別為,,,且

(1)求角大小;

(2)當時,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知函數(shù)

(I)當時,求函數(shù)的單調(diào)區(qū)間;

(II)當時,若對于區(qū)間上的任意兩個不相等的實數(shù),都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機將1,2,…,2n(n∈N* , n≥2)這2n個連續(xù)正整數(shù)分成A、B兩組,每組n個數(shù),A組最小數(shù)為a1 , 最大數(shù)為a2;B組最小數(shù)為b1 , 最大數(shù)為b2;記ξ=a2﹣a1 , η=b2﹣b1
(1)當n=3時,求ξ的分布列和數(shù)學(xué)期望;
(2)C表示事件“ξ與η的取值恰好相等”,求事件C發(fā)生的概率P(C);
(3)對(2)中的事件C, 表示C的對立事件,判斷P(C)和P( )的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈(﹣
(1)當a= ,θ= 時,求f(x)在區(qū)間[0,π]上的最大值與最小值;
(2)若f( )=0,f(π)=1,求a,θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓 的離心率,且橢圓上一點到點的距離的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè), 為拋物線 上一動點,過點作拋物線的切線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,且2a5a3=13,S4=16.

(1)求數(shù)列{an}的前n項和Sn;

(2)設(shè)Tn(-1)iai,若對一切正整數(shù)n,不等式 λTn<[an1+(-1)n1an]·2n1 恒成立,求實數(shù) λ 的取值范圍;

(3)是否存在正整數(shù)mn(nm2),使得S2SmS2,SnSm成等比數(shù)列?若存在,求出所有的m,n;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,|an+1﹣an|=pn , n∈N*
(1)若{an}是遞增數(shù)列,且a1 , 2a2 , 3a3成等差數(shù)列,求p的值;
(2)若p= ,且{a2n1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:

對某城市一年(365天)的空氣質(zhì)量進行監(jiān)測,獲得的API數(shù)據(jù)按照區(qū)間 ,,,,進行分組,得到頻率分布條形圖如圖.

(1)求圖中的值;

(2)空氣質(zhì)量狀況分別為輕微污染或輕度污染定為空氣質(zhì)量Ⅲ級,求一年中空氣質(zhì)量為Ⅲ級的天數(shù)

(3)小張到該城市出差一天,這天空氣質(zhì)量為優(yōu)良的概率是多少?

查看答案和解析>>

同步練習冊答案