已知拋物線的焦點是雙曲線=1()的右頂點,雙曲線的其中一條漸近線方程為,則雙曲線的離心率為________。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分12分)直線l 與拋物線y2 = 4x 交于兩點A、BO 為原點,且= -4.
(I)       求證:直線l 恒過一定點;
(II)     若 4≤| AB | ≤,求直線l 斜率k 的取值范圍;
(Ⅲ) 設拋物線的焦點為F,∠AFB = θ,試問θ 能否等于120°?若能,求出相應的直線l 的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)設橢圓的上頂點為,橢圓上兩點軸上的射影分別為左焦點和右焦點,直線的斜率為,過點且與垂直的直線與軸交于點,的外接圓為圓
(1)求橢圓的離心率;
(2)直線與圓相交于兩點,且,求橢圓方程;
(3)設點在橢圓C內(nèi)部,若橢圓C上的點到點N的最遠距離不大于,求橢圓C的短軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 已知兩定點滿足條件的點的軌跡是曲線,直線與曲線交于兩點 如果且曲線上存在點,使 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若圓方程為,圓方程為,則方程表示的軌跡是
A.經(jīng)過兩點的直線B.線段的中垂線
C.兩圓公共弦所在的直線D.一條直線且該直線上的點到兩圓的切線長相等

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程所表示的曲線的對稱性是  (   )
A.關于軸對稱B.關于軸對稱
C.關于直線對稱D.關于原點對稱

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是橢圓的長軸,若把長軸2010等分,過每個分點作 的垂線,交橢圓的上半部分于為橢圓的左焦點,則的值是                    (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過雙曲線C的一個焦點作圓 的兩條切線,切點分別為AB,若,則雙曲線C的離心率為           。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



(本小題滿分12分)
如圖所示,已知圓,直線是圓的一條切線,且與橢圓交于不同的兩點,
(1)若弦的長為,求直線的方程;
(2)當直線滿足條件(1)時,求的值.

查看答案和解析>>

同步練習冊答案