【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(1)求證:平面AED⊥平面A1FD1;
(2)在AE上求一點(diǎn)M,使得A1M⊥平面ADE.
【答案】
(1)證明:建立如圖所示的空間直角坐標(biāo)系D﹣xyz,
不妨設(shè)正方體的棱長(zhǎng)為2,則A(2,0,0),E(2,2,1),
F(0,1,0),A1(2,0,2),D1(0,0,2),
設(shè)平面AED的法向量為
=(x1,y1,z1),
則 =(x1,y1,z1)(2,0,0)=0,
=(x1,y1,z1)(2,2,1)=0,
∴2x1=0,2x1+2y1+z1=0.
令y1=1,得 =(0,1,﹣2),
同理可得平面A1FD1的法向量 =(0,2,1).
∵ =0,∴ ,
∴平面AED⊥平面A1FD1.
(2)解:由于點(diǎn)M在直線AE上,
設(shè) =λ(0,2,1)=(0,2λ,λ).
可得M(2,2λ,λ),∴ =(0,2λ,λ﹣2),
∵AD⊥A1M,∴要使A1M⊥平面ADE,
只需A1M⊥AE,
∴ =(0,2λ,λ﹣2)(0,2,1)=5λ﹣2=0,
解得λ= .故當(dāng)A= A時(shí),A1M⊥平面ADE
【解析】(1)建立如圖所示的空間直角坐標(biāo)系D﹣xyz,不妨設(shè)正方體的棱長(zhǎng)為2,設(shè)平面AED的法向量為 =(x1,y1,z1),
利用 =0, =0,得 =(0,1,﹣2),同理可得平面A1FD1的法向量 =(0,2,1).
通過 =0,證明平面AED⊥平面A1FD1.(2)由于點(diǎn)M在直線AE上,設(shè) =(0,2λ,λ). =(0,2λ,λ﹣2),利用AD⊥A1M, =0,推出5λ﹣2=0,
解得λ= .故當(dāng)A= A時(shí),A1M⊥平面ADE點(diǎn)M在直線AE上,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)一種產(chǎn)品的固定成本(即固定投入)為0.5萬元,但每生產(chǎn)一百件這樣的產(chǎn)品,需要增加可變成本(即另增加投入)0.25萬元. 市場(chǎng)對(duì)此產(chǎn)品的年需求量為500件,銷售的收入函數(shù)為= (單位:萬元),其中是產(chǎn)品售出的數(shù)量(單位:百件).
(1)該公司這種產(chǎn)品的年產(chǎn)量為百件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤(rùn)為當(dāng)年產(chǎn)量的函數(shù),求;
(2)當(dāng)年產(chǎn)量是多少時(shí),工廠所得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知右焦點(diǎn)為F(c,0)的橢圓M: =1(a>b>0)過點(diǎn) ,且橢圓M關(guān)于直線x=c對(duì)稱的圖形過坐標(biāo)原點(diǎn).
(1)求橢圓M的方程;
(2)過點(diǎn)(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點(diǎn),點(diǎn)Q關(guān)于x軸的對(duì)稱原點(diǎn)為E,證明:直線PE與x軸的交點(diǎn)為F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖C,D是以AB為直徑的圓上的兩點(diǎn),,F是AB上的一點(diǎn),且,將圓沿AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知
(1)求證:AD平面BCE
(2)求證:AD//平面CEF;
(3)求三棱錐A-CFD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人獨(dú)立地對(duì)某一技術(shù)難題進(jìn)行攻關(guān).甲能攻克的概率為 ,乙能攻克的概率為 ,丙能攻克的概率為 .
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級(jí)不做任何獎(jiǎng)勵(lì);若該技術(shù)難題被攻克,上級(jí)會(huì)獎(jiǎng)勵(lì)a萬元.獎(jiǎng)勵(lì)規(guī)則如下:若只有1人攻克,則此人獲得全部獎(jiǎng)金a萬元;若只有2人攻克,則獎(jiǎng)金獎(jiǎng)給此二人,每人各得 萬元;若三人均攻克,則獎(jiǎng)金獎(jiǎng)給此三人,每人各得 萬元.設(shè)甲得到的獎(jiǎng)金數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
⑵當(dāng)時(shí),求函數(shù)的最小值;
⑶是否存在非負(fù)實(shí)數(shù)、,使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,若存在,求出、的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合=冪函數(shù)=的圖象不過原點(diǎn),則集合A的真子集的個(gè)數(shù)為
A. 1 B. 2 C. 3 D. 無數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是( )
A.x∈R,f(x)≤f(x0)
B.x∈R,f(x)≥f(x0)
C.x∈R,f(x)≤f(x0)
D.x∈R,f(x)≥f(x0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(1)若函數(shù), 的最小值為-16,求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),不等式的解集為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com