已知函數(shù)(a∈(0,1)),求f(x)的最值,并討論周期性,奇偶性,單調(diào)性。

見解析


解析:

:對(duì)三角函數(shù)式降冪

  

∴ f(x)=則 y=au∴ 0<a<1∴ y=au是減函數(shù)

∴ 由,此為f(x)的減區(qū)間

,此為f(x)增區(qū)間

∵ u(-x)=u(x)∴ f(x)=f(-x)∴ f(x)為偶函數(shù)∵ u(x+π)=f(x)

∴ f(x+π)=f(x)∴ f(x)為周期函數(shù),最小正周期為π

當(dāng)x=kπ(k∈Z)時(shí),ymin=1當(dāng)x=kπ+(k∈Z)時(shí),ynax=

注:研究三角函數(shù)性質(zhì),一般降冪化為y=Asin(ωx+φ)等一名一次一項(xiàng)的形式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年四川省成都七中高三數(shù)學(xué)專項(xiàng)訓(xùn)練:指數(shù)、對(duì)數(shù)函數(shù)(解析版) 題型:解答題

已知函數(shù)(a≠0且a≠1).
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)(理)記(2)中的函數(shù)的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出l的方程;若不存在,請(qǐng)說明理由.
(文) 記(2)中的函數(shù)的圖象為曲線C,試問曲線C是否為中心對(duì)稱圖形?若是,請(qǐng)求出對(duì)稱中心的坐標(biāo)并加以證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考沖刺預(yù)測(cè)數(shù)學(xué)試卷13(理科)(解析版) 題型:解答題

已知函數(shù)(a≠0且a≠1).
(Ⅰ)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)已知當(dāng)x>0時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(Ⅲ)記(Ⅱ)中的函數(shù)的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于函數(shù),若存在x0∈R,使方程成立,則稱x0的不動(dòng)點(diǎn),已知函數(shù)a≠0).

(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。對(duì)于函數(shù),若存在x0∈R,使成立,則稱x0的不動(dòng)點(diǎn)。已知函數(shù)a≠0)。

(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對(duì)稱,求的的最小值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(浙江卷)解析版(文) 題型:選擇題

 [番茄花園1]  已知函數(shù) =

(A)0                (B)1                (C)2                (D)3

 


 [番茄花園1]1.

查看答案和解析>>

同步練習(xí)冊(cè)答案