精英家教網 > 高中數學 > 題目詳情
選修4-5:不等式選講:
已知a,b,c為正數,證明:
a2b2+b2c2+c2a2a+b+C
≥abc.
分析:利用基本不等式,可得a2(b2+c2)≥2a2bc,b2(a2+c2)≥2b2ac,c2(b2+a2)≥2c2ba,三式相加,即可得到結論.
解答:證明:∵a,b,c為正數,∴a2(b2+c2)≥2a2bc①,b2(a2+c2)≥2b2ac②,c2(b2+a2)≥2c2ba③
①+②+③可得:2(a2b2+b2c2+c2a2)≥2abc(a+b+c)
a2b2+b2c2+c2a2
a+b+C
≥abc.
點評:本題考查不等式的證明,考查基本不等式的運用,解題的關鍵是利用基本不等式進行證明.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

選修4-5:不等式選講
設x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講:
設正有理數x是
2
的一個近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2
;
(Ⅱ)比較y與x哪一個更接近于
2
?

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數,且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設函數,f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案