【題目】已知函數(shù)(),其中為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性及極值;
(2)若不等式在內(nèi)恒成立,求證: .
【答案】(1)答案見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】試題分析:
(1)由題意可得導(dǎo)函數(shù)的解析式,分類討論可得:當(dāng)時(shí), 在內(nèi)單調(diào)遞增,沒(méi)有極值;當(dāng)時(shí), 在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增, 的極小值為,無(wú)極大值.
(2)分類討論:當(dāng)時(shí), 明顯成立;
當(dāng)時(shí),由(1),知在內(nèi)單調(diào)遞增,此時(shí)利用反證法可證得結(jié)論;
當(dāng)時(shí),構(gòu)造新函數(shù),結(jié)合函數(shù)的單調(diào)性即可證得題中的結(jié)論.
試題解析:
(1)由題意得.
當(dāng),即時(shí), , 在內(nèi)單調(diào)遞增,沒(méi)有極值.
當(dāng),即時(shí),
令,得,
當(dāng)時(shí), , 單調(diào)遞減;
當(dāng)時(shí), , 單調(diào)遞增,
故當(dāng)時(shí), 取得極小值 ,無(wú)極大值.
綜上所述,當(dāng)時(shí), 在內(nèi)單調(diào)遞增,沒(méi)有極值;
當(dāng)時(shí), 在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增, 的極小值為,無(wú)極大值.
(2)當(dāng)時(shí), 成立.
當(dāng)時(shí),由(1),知在內(nèi)單調(diào)遞增,
令為和中較小的數(shù),
所以,且,
則, .
所以 ,
與恒成立矛盾,應(yīng)舍去.
當(dāng)時(shí), ,
即,
所以.
令,
則.
令,得,
令,得,
故在區(qū)間內(nèi)單調(diào)遞增,
在區(qū)間內(nèi)單調(diào)遞減.
故,
即當(dāng)時(shí), .
所以 .
所以.
而,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣ sinxcosx+1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(θ)= ,θ∈( , ),求sin2θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為,b,c,且acosC+ c=b,若a=1, c﹣2b=1,則角C為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列3個(gè)命題: 1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
2)若函數(shù)f(x)=ax2+bx+2與x軸沒(méi)有交點(diǎn),則b2﹣8a<0且a>0;
3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足an+1+an=4n﹣3(n∈N*)
(Ⅰ)若{an}是等差數(shù)列,求其通項(xiàng)公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項(xiàng)和,求S2n+1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,a1= ,且 =nan(n∈N+).
(1)寫(xiě)出此數(shù)列的前4項(xiàng);
(2)歸納猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}: , + , + + , + + + ,…,那么數(shù)列{bn}={ }的前n項(xiàng)和為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式ax2﹣3x+2>0的解集為{x|x<1或x>b}
(1)求實(shí)數(shù)a、b的值;
(2)解關(guān)于x的不等式 >0(c為常數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),圓C: ,
(1)過(guò)點(diǎn)向圓C引切線l,求切線l的方程;
(2)過(guò)點(diǎn)A作直線 交圓C于P,Q,且,求直線的斜率k;
(3)定點(diǎn)M,N在直線 上,對(duì)于圓C上任意一點(diǎn)R都滿足,試求M,N兩點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com