設(shè)函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于 [1,2], [0,1],使成立,求實(shí)數(shù)的取值范圍.

 

【答案】

(1);(2)單調(diào)增區(qū)間為;單調(diào)減區(qū)間為;(3)b的取值范圍是

【解析】

試題分析:(1)由函數(shù)當(dāng)時(shí),首先求出函數(shù)的定義域.再通過(guò)求導(dǎo)再求出導(dǎo)函數(shù)當(dāng)時(shí)的導(dǎo)函數(shù)的的值即為切線的斜率.又因?yàn)檫^(guò)點(diǎn)則可求出在的切線方程.本小題主要考查對(duì)數(shù)的求導(dǎo)問(wèn)題.

(2)當(dāng)時(shí)通過(guò)求導(dǎo)即可得,再求出導(dǎo)函數(shù)的值為零時(shí)的x值.由于定義域是x大于零.所以可以根據(jù)導(dǎo)函數(shù)的正負(fù)值判斷函數(shù)的單調(diào)性.

(3)由于在(2)的條件下,設(shè)函數(shù),若對(duì)于 [1,2], [0,1],使成立.等價(jià)于上的最小值要大于或等于上的最小值.由于是遞增的所以易求出最小值.再對(duì)中的b進(jìn)行討論從而得到要求的結(jié)論.

試題解析:函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040904271532974802/SYS201404090427581891614344_DA.files/image019.png">,                       1分

                                  2分

(1)當(dāng)時(shí),,,        3分

,

,                                            4分

處的切線方程為.                     5分

(2) .

當(dāng),或時(shí), ;                              6分

當(dāng)時(shí), .                                         7分

當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.   8分

(如果把單調(diào)減區(qū)間寫(xiě)為,該步驟不得分)

(3)當(dāng)時(shí),由(2)可知函數(shù)上為增函數(shù),

∴函數(shù)在[1,2]上的最小值為               9分

若對(duì)于[1,2],成立上的最小值不大于在[1,2]上的最小值(*)                         10分

,

當(dāng)時(shí),上為增函數(shù),

與(*)矛盾                      11分

當(dāng)時(shí),,由

得,                                             12分

③當(dāng)時(shí),上為減函數(shù),

.                                           13分

綜上,b的取值范圍是                               14分

考點(diǎn):1.利用求導(dǎo)求函數(shù)的切線方程.2.函數(shù)的單調(diào)性.3.關(guān)于任意與存在相關(guān)的不等式的問(wèn)題.4.區(qū)別恒成立問(wèn)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)。

(1)當(dāng)時(shí),求不等式的解集;

(2)若對(duì)恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南汝城第一中學(xué)、長(zhǎng)沙實(shí)驗(yàn)中學(xué)高三11月聯(lián)考文數(shù)學(xué)卷(解析版) 題型:解答題

設(shè)函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于[1,2],

[0,1],使成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)設(shè)函數(shù)。

(1)當(dāng)時(shí),求的單調(diào)區(qū)間。

(2)若上的最大值為,求的值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆上海市高三第一學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù)。

(1)當(dāng)時(shí),求函數(shù)的最小值;

(2)當(dāng)時(shí),試判斷函數(shù)的單調(diào)性,并證明。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案