設(shè)
(1)若上存在單調(diào)遞增區(qū)間,求的取值范圍;
(2)當(dāng)a=1時(shí),求上的最值.
(1)上存在單調(diào)遞增區(qū)間
(2)
(1)題目轉(zhuǎn)化為上有解。進(jìn)而轉(zhuǎn)化為即可.
(2)利用導(dǎo)數(shù)求其極值,然后與區(qū)間的端點(diǎn)的函數(shù)值比較,最大的就是最大值,最小的就是最小值。
解:(1)由--------2分
當(dāng)

所以,當(dāng)上存在單調(diào)遞增區(qū)間 --------4分
(2)當(dāng)a=1時(shí),
2+x+2,令2+x+2=0得x1=-1,x2=2------------6分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212338091682.png" style="vertical-align:middle;" />上單調(diào)遞增,在上單調(diào)遞減.
所以在[1,4]上的在[1,4]上的最大值為
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212338481643.png" style="vertical-align:middle;" />, 最小值為 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)設(shè)函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;(Ⅱ)求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)從點(diǎn)出發(fā),按逆時(shí)針?lè)较蜓刂荛L(zhǎng)為的圖形運(yùn)動(dòng)一周,兩點(diǎn)連線的距離與點(diǎn)走過(guò)的路程的函數(shù)關(guān)系如圖,那么點(diǎn)所走的圖形是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)有兩個(gè)極值點(diǎn),則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f (x)=f (p-x),且當(dāng)時(shí),f (x)=x+sinx,設(shè)a=f (1),b=f (2),c=f (3),則(  )
A.a<b<cB.b<c<aC.c<b<a D.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)時(shí)取得極值.
(1)求a、b的值;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)的導(dǎo)函數(shù)的圖像如左圖所示,那么函數(shù)的圖像最有可能的是(   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)在[-1,1]上有最大值3,則該函數(shù)在[-1,1]上的最小值是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)(0,1)處的切線方程為        ▲    

查看答案和解析>>

同步練習(xí)冊(cè)答案