【題目】某設計部門承接一產品包裝盒的設計(如圖所示),客戶除了要求、邊的長分別為和外,還特別要求包裝盒必需滿足:①平面平面;②平面與平面所成的二面角不小于;③包裝盒的體積盡可能大.
若設計部門設計出的樣品滿足:與均為直角且長,矩形的一邊長為,請你判斷該包裝盒的設計是否能符合客戶的要求?說明理由.
【答案】滿足,理由見解析.
【解析】
假設滿足,只需證明滿足①、②、③即可.
假設該包裝盒的樣品設計符合客戶的要求.
(1)以下證明滿足條件①的要求.
∵四邊形為矩形,與均為直角,
∴且∴面,
在矩形中,∥
∴面∴面面
(2)以下證明滿足條件②、③的要求.
∵矩形的一邊長為,
而直角三角形的斜邊長為,∴
設,則,
以為原點,分別為軸的正半軸建立空間直角坐標系,
則,,,
設面的一個法向量為,,
∵
∴,取,則
而平面的一個法向量為,
設面與面所成的二面角為,則,
∴, ∴,
即當時,面與面所成的二面角不小于
又, 由與均為直角知,面,該包裝盒可視為四棱錐,
當且僅當,即時,的體積最大,最大值為
而,可以滿足面與面所成的二面角不小于的要求,
綜上,該包裝盒的設計符合客戶的要求.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,動點P到兩點、的距離之差的絕對值等于.設點P的軌跡為C.
(1)求C的軌跡方程;
(2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點,且與直線相切.
(1)求動圓圓心的軌跡的方程;
(2)設是軌跡上異于原點的兩個不同點,直線和的斜率分別為,且,證明直線恒過定點,并求出該定點的坐標
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)若函數(shù)是R上的單調增函數(shù),求實數(shù)a的取值范圍;
(2)設, 是的導函數(shù).
①若對任意的,求證:存在使;
②若,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸,以相同的長度單位建立極坐標系.己知直線的直角坐標方程為,曲線C的極坐標方程為.
(1)設t為參數(shù),若,求直線的參數(shù)方程和曲線C的直角坐標方程;
(2)已知:直線與曲線C交于A,B兩點,設,且,,依次成等比數(shù)列,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸,以相同的長度單位建立極坐標系.己知直線的直角坐標方程為,曲線C的極坐標方程為.
(1)設t為參數(shù),若,求直線的參數(shù)方程和曲線C的直角坐標方程;
(2)已知:直線與曲線C交于A,B兩點,設,且,,依次成等比數(shù)列,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面四邊形ABCD中, AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面積為2.
(1)求AD的長;
(2)求△CBD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com