(文科)已知關(guān)于x的一元二次方程。
(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從兩個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率。
)解:設(shè)事件為“方程有實根”.
當(dāng),時,方程有實根的充要條件為.……2分
(Ⅰ)基本事件共8個:.其中第一個數(shù)表示的取值,第二個數(shù)表示的取值.………………………4分
事件中包含7個基本事件,所以事件發(fā)生的概率為.……………7分
(Ⅱ)試驗的全部結(jié)束所構(gòu)成的區(qū)域為.………9分
構(gòu)成事件的區(qū)域為
所以所求的概率為.…………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)等于
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),,實數(shù)a滿足>0,那么當(dāng)x>1時必有(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,滿足“對任意,,當(dāng)時,”的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、出租車幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的。在出租車幾何學(xué)中,點還是形如的有序?qū)崝?shù)對,直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣。直角坐標(biāo)系內(nèi)任意兩點定義它們之間的一種“距離”:,請解決以下問題:
1、(理)求線段上一點的距離到原點的“距離”;
(文)求點的“距離”;
2、(理)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,
求“圓周”上的所有點到點 的“距離”均為 的“圓”方程;
(文)求線段上一點的距離到原點的“距離”;
3、(理)點、,寫出線段的垂直平分線的軌跡方程并畫出大致圖像.
(文)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,點、,,求經(jīng)過這三個點確定的一個“圓”的方程,并畫出大致圖像;
(說明所給圖形小正方形的單位是1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)唯一的零點在區(qū)間內(nèi),那么下面命題錯誤的(   )
A.函數(shù)在區(qū)間內(nèi)有零點B.函數(shù)在區(qū)間內(nèi)無零點
C.函數(shù)在區(qū)間內(nèi)有零點D.函數(shù)在區(qū)間內(nèi)不一定有零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在上的函數(shù),對任意的時,都有
.記,則在數(shù)列中,
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.設(shè)函數(shù),,則
A.1B.3C.15D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是第二象限角,若,則的值為_______________.

查看答案和解析>>

同步練習(xí)冊答案