【題目】已知,,,…,等10所高校舉行自主招生考試,某同學(xué)參加每所高校的考試獲得通過(guò)的概率均為.

(1)如果該同學(xué)10所高校的考試都參加,恰有所通過(guò)的概率為,當(dāng)為何值時(shí),取得最大值;

(2)若,該同學(xué)參加每所高?荚囁璧馁M(fèi)用均為元,該同學(xué)決定按,,,…,順序參加考試,一旦通過(guò)某所高校的考試,就不再參加其它高校的考試,否則,繼續(xù)參加其它高校的考試,求該同學(xué)參加考試所需費(fèi)用的分布列及數(shù)學(xué)期望.

【答案】(1)當(dāng)時(shí),取得最大值;(2)見(jiàn)解析

【解析】

1)根據(jù)題干得到同學(xué)恰好通過(guò)所高校自主招生考試的概率為,將這個(gè)表達(dá)式看做m的函數(shù)式,對(duì)函數(shù)求導(dǎo),可得到單調(diào)性進(jìn)而得到最值;(2)根據(jù)題干知學(xué)生需要的費(fèi)用有可能為a,10a,這些情況,再分別求出對(duì)應(yīng)的概率值,可得到分布列和期望值.

(1)因?yàn)樵搩諏W(xué)通過(guò)各?荚嚨母怕示鶠,所以該同學(xué)恰好通過(guò)所高校自主招生考試的概率為

當(dāng)時(shí),,遞增;

當(dāng)時(shí),,遞減;

所以當(dāng)時(shí),取得最大值.

(2)設(shè)該同學(xué)共參加了次考試的概率為.

,

∴所以該同學(xué)參加考試所需費(fèi)用的分布列如下:

所以,

,①

,②

由①-②得

所以,

所以

(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知橢圓E的中心在原點(diǎn),長(zhǎng)軸長(zhǎng)為8,橢圓在X軸上的兩個(gè)焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成等邊三角形.

求橢圓的標(biāo)準(zhǔn)方程;

過(guò)橢圓內(nèi)一點(diǎn)的直線與橢圓E交于不同的A,B兩點(diǎn),交直線于點(diǎn)N,若,求證:為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推動(dòng)更多人閱讀,聯(lián)合國(guó)教科文組織確定每年的日為“世界讀書(shū)日”.設(shè)立目的是希望居住在世界各地的人,無(wú)論你是年老還是年輕,無(wú)論你是貧窮還是富裕,都能享受閱讀的樂(lè)趣,都能尊重和感謝為人類文明做出過(guò)巨大貢獻(xiàn)的思想大師們,都能保護(hù)知識(shí)產(chǎn)權(quán).為了解不同年齡段居民的主要閱讀方式,某校興趣小組在全市隨機(jī)調(diào)查了名居民,經(jīng)統(tǒng)計(jì)這人中通過(guò)電子閱讀與紙質(zhì)閱讀的人數(shù)之比為,將這人按年齡分組,其中統(tǒng)計(jì)通過(guò)電子閱讀的居民得到的頻率分布直方圖如圖所示.

(1)求的值及通過(guò)電子閱讀的居民的平均年齡;

(2)把年齡在第組的居民稱為青少年組,年齡在第組的居民稱為中老年組,若選出的人中通過(guò)紙質(zhì)閱讀的中老年有人,請(qǐng)完成上面列聯(lián)表,則是否有的把握認(rèn)為閱讀方式與年齡有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p曲線C1=1表示焦點(diǎn)在x軸上的橢圓,命題q曲線C2表示雙曲線

1)若命題p是真命題,求m的取值范圍;

2)若pq的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知服從正態(tài)分布的隨機(jī)變量在區(qū)間,,內(nèi)取值的概率分別為0.6826,0.9544,0.9974.若某種袋裝大米的質(zhì)量(單位:)服從正態(tài)分布,任意選一袋這種大米,質(zhì)量在的概率為_

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn),點(diǎn),為拋物線上一點(diǎn),且不在直線上,則周長(zhǎng)取最小值時(shí),線段的長(zhǎng)為( )

A. 1B. C. 5D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)

討論的單調(diào)區(qū)間;

當(dāng)時(shí),上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下四個(gè)命題:

1命題,使得,則,都有;

2)已知函數(shù)f(x)|log2x|ab,f(a)f(b)ab1;

3若平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等,則平面α平行于平面β

4已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱

其中真命題的序號(hào)為______________.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),,求的最大整數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案