關(guān)于x的方程cos2x+sinx-a=0有實(shí)數(shù)解,則實(shí)數(shù)a的最小值是
-1
-1
分析:將方程化簡(jiǎn)為sinx的方程,結(jié)合sinx的取值范圍從而求出a的取值范圍.
解答:解:∵cos2x+sinx-a=0
∴-sin2x+sinx+1-a=0
等價(jià)于:-y2+y+1-a=0   
∴a=-(y-
1
2
2+
5
4

∵y∈[-1,1]
∴-(y-
1
2
2∈[-
9
4
,0]

即a∈[-1,
5
4
]

∴a的最小值為:-1
點(diǎn)評(píng):結(jié)合了三角函數(shù)和二次函數(shù)的內(nèi)容,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sinθ,cosθ是關(guān)于x的方程5x2-x+a=0(a是常數(shù))的兩個(gè)根,θ∈(0,π),則cos2θ=
-
7
25
-
7
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
,
b
=(
3
,2cosωx)
,設(shè)函數(shù)f(x)=
a
b
(x∈R)
的圖象關(guān)于直線x=
π
2
對(duì)稱,其中ω為常數(shù),且ω∈(0,1).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若將y=f(x)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
1
6
,再將所得圖象向右平移
π
3
個(gè)單位,縱坐標(biāo)不變,得到y(tǒng)=h(x)的圖象,若關(guān)于x的方程h(x)+k=0在區(qū)間[0,
π
2
]
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
asinωx•cosωx-cos2ωx+
3
2
(ω∈R+,a∈R)
的最小正周期為π,其圖象關(guān)于直線x=
π
6
對(duì)稱.
(1)求函數(shù)f(x)在[0,
π
2
]
上的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程1-f(x)=m在[0,
π
2
]
上只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•淄博二模)已知函數(shù)f(x)=
3
sinωx•cosωx+cos2ωx-
1
2
(ω>0)
,其最小正周期為
π
2

(I)求f(x)的表達(dá)式;
(II)將函數(shù)f(x)的圖象向右平移
π
8
個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,
π
2
]
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sinθ,cosθ是關(guān)于x的方程5x2-x+a=0(a是常數(shù))的兩根,θ∈(0,π),求cos2θ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案