【題目】已知是橢圓的左、右焦點(diǎn),離心率為,是平面內(nèi)兩點(diǎn),滿足,線段的中點(diǎn)在橢圓上,周長(zhǎng)為12.

1)求橢圓的方程;

2)若與圓相切的直線與橢圓交于,求(其中為坐標(biāo)原點(diǎn))的取值范圍.

【答案】12

【解析】

1)由已知可得是線段的中點(diǎn),再由是線段的中點(diǎn),結(jié)合橢圓定義可得周為,再由離心率,求出,即可求出橢圓標(biāo)準(zhǔn)方程.

(2)先考慮直線斜率不存在,求出,直線斜率存在,設(shè)直線方程,與單位圓相切求出關(guān)系,直線方程與橢圓方程聯(lián)立,消去,求出橫坐標(biāo)乘積,進(jìn)而求出縱坐標(biāo)乘積,結(jié)合關(guān)系,求出關(guān)于目標(biāo)函數(shù),根據(jù)函數(shù)的特點(diǎn),求出其范圍.

1)連接,,

是線段的中點(diǎn),是線段的中點(diǎn),

由橢圓的定義知,,

周長(zhǎng)為,

由離心率為知,,解得,,

橢圓的方程為.()

2)當(dāng)直線的斜率不存在時(shí),直線,

代入橢圓方程解得,此時(shí),

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,

由直線與圓相切知,,

將直線方程代入橢圓的方程整理得,

,

設(shè),則,

,

,

,

,,

,

綜上所述,的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}首項(xiàng)a11,前n項(xiàng)和Snan之間滿足an

1)求證:數(shù)列{}是等差數(shù)列

2)求數(shù)列{an}的通項(xiàng)公式

3)設(shè)存在正數(shù)k,使(1+S1)(1+S2)…(1+Sn)≥k對(duì)于一切nN*都成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)作傾斜角為的直線,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,將曲線上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到曲線,直線與曲線交于不同的兩點(diǎn).

1)求直線的參數(shù)方程和曲線的普通方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】同程旅游隨機(jī)調(diào)查了年齡在(單位:歲)內(nèi)的1250人的購(gòu)票情況,其中50歲以下(不包含50歲)的有900人,50歲以上(包含50歲)的有350人,由調(diào)查數(shù)據(jù)的統(tǒng)計(jì)結(jié)果顯示,有的人參與網(wǎng)上購(gòu)票,網(wǎng)上購(gòu)票人數(shù)的頻率分布直方圖如下圖所示.

1)已知年齡在,的網(wǎng)上購(gòu)票人數(shù)成等差數(shù)列,求的值;

2)根據(jù)題目數(shù)據(jù)填寫列聯(lián)表,并根據(jù)填寫數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為網(wǎng)上購(gòu)票與年齡有關(guān)系?

50歲以下

50歲以上

總計(jì)

參與網(wǎng)上購(gòu)票

不參與網(wǎng)上購(gòu)票

總計(jì)

附:

0.010

0.005

0.001

6.635

7.879

10.828

3)為鼓勵(lì)大家網(wǎng)上購(gòu)票,該平臺(tái)常采用購(gòu)票就發(fā)放酒店入住代金券的方法進(jìn)行促銷,具體做法如下:年齡在歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購(gòu)票者中抽取10人,并在這10人中隨機(jī)抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三1班共有48人,在“六選三”時(shí),該班共有三個(gè)課程組合:理化生、理化歷、史地政其中,選擇理化生的共有24人,選擇理化歷的共有16人,其余人選擇了史地政,現(xiàn)采用分層抽樣的方法從中抽出6人,調(diào)查他們每天完成作業(yè)的時(shí)間.

1)應(yīng)從這三個(gè)組合中分別抽取多少人?

2)若抽出的6人中有4人每天完成六科(含語(yǔ)數(shù)英)作業(yè)所需時(shí)間在3小時(shí)以上,2人在3小時(shí)以內(nèi).現(xiàn)從這6人中隨機(jī)抽取3人進(jìn)行座談.

X表示抽取的3人中每天完成作業(yè)所需時(shí)間在3小時(shí)以上的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線l和曲線的極坐標(biāo)方程;

2)曲線分別交直線l和曲線于點(diǎn)AB,求的最大值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十八大指出,倡導(dǎo)富強(qiáng)、民主、文明、和諧,倡導(dǎo)自由、平等、公正、法治,倡導(dǎo)愛(ài)國(guó)、敬業(yè)、誠(chéng)信、友善.現(xiàn)在從民主文明、自由、公正愛(ài)國(guó)、敬業(yè)6個(gè)詞語(yǔ)中任選2個(gè),則至少有一個(gè)詞語(yǔ)是從國(guó)家層面對(duì)社會(huì)主義核心價(jià)值觀基本理念的凝練的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲居住在城鎮(zhèn)的,準(zhǔn)備開車到單位處上班,若該地各路段發(fā)生堵車事件都是相互獨(dú)立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如圖(例如:算作兩個(gè)路段:路段發(fā)生堵車事件的概率為,路段發(fā)生堵車事件的概率為).

(1)請(qǐng)你為甲選擇一條由的最短路線

(即此人只選擇從西向東和從南向北的路線),

使得途中發(fā)生堵車事件的概率最;

(2)設(shè)甲在路線中遇到的堵車次數(shù)為隨機(jī)變量,的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案