精英家教網 > 高中數學 > 題目詳情

【題目】已知a,b∈R,若a2+b2﹣ab=1,則ab的取值范圍是

【答案】[ ,1]
【解析】解:當ab>0時, ∵a,b∈R,且a2+b2﹣ab=1,
∴a2+b2=ab+1,
又a2+b2≥2ab當且僅當a=b時“=”成立;
∴ab+1≥2ab,
∴ab≤1,當且僅當a=b=±1時“=”成立;
即0<ab≤1;
當ab=0時,不妨設a=0,則b=±1,滿足題意;
當ab<0時,
又∵a2+b2≥﹣2ab,
∴ab+1≥﹣2ab,
∴﹣3ab≤1,
∴ab≥﹣
當且僅當a= ,b=﹣ ,或a=﹣ 、b= 時“=”成立;
即0>ab≥﹣ ;
綜上,ab的取值范圍是[﹣ ,1].
故答案為[ ,1].
靈活應用基本不等式a2+b2≥2ab,即可求出ab的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數, ,其中.

(1)當時,求函數的值域;

(2)若對任意,均有,求的取值范圍;

(3)當時,設,若的最小值為,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正四棱錐P﹣ABCD,B1為PB的中點,D1為PD的中點,則兩個棱錐A﹣B1CD1 , P﹣ABCD的體積之比是(
A.1:4
B.3:8
C.1:2
D.2:3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|1≤x≤7},B={x|﹣2m+1<x<m},全集為實數集R.
(1)若m=5,求A∪B,(RA)∩B;
(2)若A∩B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:(4x﹣3)2≤1;命題q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數是老年職工人數的2倍.為了解職工身體狀況,現采用分層抽樣方法進行調查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數為(
A.9
B.18
C.27
D.36

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓C: =1(a>b>0)的離心率為 ,其左焦點到點P(2,1)的距離為
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點.求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列的前項和為,且.

(1)求證:數列為等比數列;

2)設數列的前項和為,求證: 為定值;

3)判斷數列中是否存在三項成等差數列,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C1:(x+3)2+y2=1和圓C2:(x﹣3)2+y2=9,動圓M同時與圓C1及圓C2相外切,求動圓圓心M的軌跡方程.

查看答案和解析>>

同步練習冊答案