【題目】求滿足下列條件的直線方程.
(1)經(jīng)過點(diǎn)A(-1,-3),且斜率等于直線3x+8y-1=0斜率的2倍;
(2)過點(diǎn)M(0,4),且與兩坐標(biāo)軸圍成三角形的周長為12.
【答案】(1)3x+4y+15=0.(2)4x+3y-12=0或4x-3y+12=0.
【解析】試題根據(jù)直線經(jīng)過點(diǎn)A,再根據(jù)斜率等于直線3x+8y-1=0斜率的2倍求出斜率的值,然后根據(jù)直線方程的點(diǎn)斜式寫出直線的方程,化為一般式;直線經(jīng)過點(diǎn)M(0,4),說明直線在y軸的截距為4,可設(shè)直線 在x軸的截距為a,利用三角形周長為12列方程求出a ,利用直線方程的截距式寫出直線的方程,然后化為一般方程.
試題解析:
(1)因?yàn)?x+8y-1=0可化為y=-x+ ,
所以直線3x+8y-1=0的斜率為-,
則所求直線的斜率k=2×(-)=-
又直線經(jīng)過點(diǎn)(-1,-3),
因此所求直線的方程為y+3=- (x+1),
即3x+4y+15=0.
(2)設(shè)直線與x軸的交點(diǎn)為(a,0),
因?yàn)辄c(diǎn)M(0,4)在y軸上,所以由題意有4+ +|a|=12,
解得a=±3,
所以所求直線的方程為或,
即4x+3y-12=0或4x-3y+12=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求在處的切線方程;
(2)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市大學(xué)生創(chuàng)業(yè)孵化基地某公司生產(chǎn)一種“儒風(fēng)鄒城”特色的旅游商品.該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元;設(shè)該公司年內(nèi)共生產(chǎn)該旅游商品千件并全部銷售完,每千件的銷售收入為萬元,且滿足函數(shù)關(guān)系:.
(Ⅰ)寫出年利潤(萬元)關(guān)于該旅游商品(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該公司在該旅游商品的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知=,,函數(shù)是奇函數(shù)。
(1)求a,c的值;
(2)當(dāng)x∈[-l,2]時(shí),的最小值是1,求的解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖象在直線上方,求的取值范圍;
(3)若函數(shù),,是否存在實(shí)數(shù)使得的最小值為0?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)及圓.
(1)若直線過點(diǎn)且與圓心的距離為1,求直線的方程;
(2)設(shè)過點(diǎn)的直線與圓交于兩點(diǎn),當(dāng)時(shí),求以線段為直徑的圓的方程;
(3)設(shè)直線與圓交于兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列類比推理命題(其中為有理數(shù)集,為實(shí)數(shù)集,為復(fù)數(shù)集),其中類比結(jié)論正確的是( )
A. “若,則”類比推出“若,則”.
B. 類比推出
C. 類比推出
D. “若,則”類比推出“若,則”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(1)證明:AC1⊥A1B;
(2)設(shè)直線AA1與平面BCC1B1的距離為 ,求二面角A1﹣AB﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在垂直于水平地面ABC的墻面前的點(diǎn)A處進(jìn)行射擊訓(xùn)練.已知點(diǎn)A到墻面的距離為AB,某目標(biāo)點(diǎn)P沿墻面上的射線CM移動,此人為了準(zhǔn)確瞄準(zhǔn)目標(biāo)點(diǎn)P,需計(jì)算由點(diǎn)A觀察點(diǎn)P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,則tanθ的最大值是 . (仰角θ為直線AP與平面ABC所成角)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com