【題目】已知向量=(2sinx,-1),=(sinx,3),若函數f(x)=.
(Ⅰ)求函數f(x)的最小正周期;
(Ⅱ)求函數f(x)的最大值及取得最大值時x的集合.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x+1)lnx﹣a(x﹣1).
(1)當a=4時,求曲線y=f(x)在(1,f(1))處的切線方程;
(2)若當x∈(1,+∞)時,f(x)>0,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系xOy中,曲線C1的參數方程為 (α為參數),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=2 .
(1)寫出C1的普通方程和C2的直角坐標方程;
(2)設點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:線性回歸方程中,
,其中為樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結束.除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是.假設各局比賽結果相互獨立.
(1)分別求甲隊以3:0,3:1,3:2獲勝的概率;
(2)若比賽結果為3:0或3:1,則勝利方得3分、對方得0分;若比賽結果為3:2,則勝利方得2分、對方得1分.求甲隊得分X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在直角坐標系xOy中,P(1,1),A(x,0)(x>0),B(0,y)(y>0)
(Ⅰ)若x=,⊥,求y的值;
(Ⅱ)若△OAB的周長為2,求向量與的夾角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若在定義域內存在實數x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數f(x)有“漂移點”.
(1)用零點存在定理證明:函數f(x)=x2+2x在[0,1]上有“漂移點”;
(2)若函數g(x)=lg()在(0,+∞)上有“漂移點”,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com