【題目】如圖所示四棱錐的底面為正方形,平面則下列結論中不正確的是( )
A.B.平面
C.直線與平面所成的角等于30°D.SA與平面SBD所成的角等于SC與平面SBD所成的角
【答案】C
【解析】
根據空間中垂直關系的判定和性質,平行關系的判定和性質,以及線面角的相關知識,對選項進行逐一判斷即可.
對A:因為底面ABCD為正方形,故ACBD,
又SD底面ABCD,AC平面ABCD,故SDAC,
又BD平面SBD,SD平面SBD,故AC平面SBD,
又SB平面SBD,故AC.
故A正確;
對B:因為底面ABCD為正方形,故AB//CD,
又CD平面SCD,故AB//平面SCD.
故B正確.
對C:由A中推導可知AC平面SBD,故取AC與BD交點為O,連接SO,如圖所示:
則即為所求線面角,但該三角形中邊長關系不確定,
故線面角的大小不定,
故C錯誤;
對D:由AC平面SBD,故取AC與BD交點為O,連接SO,
則即為SA和SC與平面SBD所成的角,
因為,故,
故D正確.
綜上所述,不正確的是C.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】△ABC在內角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】首屆中國國際進口博覽會于2018年11月5日至10日在上海的國家會展中心舉辦.國家展、企業(yè)展、經貿論壇、高新產品匯集……首屆進博會高點紛呈.一個更加開放和自信的中國,正用實際行動為世界構筑共同發(fā)展平臺,展現(xiàn)推動全球貿易與合作的中國方案.
某跨國公司帶來了高端智能家居產品參展,供購商洽談采購,并決定大量投放中國市場.已知該產品年固定研發(fā)成本30萬美元,每生產一臺需另投入90美元.設該公司一年內生產該產品萬臺且全部售完,每萬臺的銷售收入為萬美元,
(1)寫出年利潤(萬美元)關于年產量(萬臺)的函數(shù)解析式;(利潤=銷售收入-成本)
(2)當年產量為多少萬臺時,該公司獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有5人進入到一列有7節(jié)車廂的地鐵中,分別求下列情況的概率用數(shù)字作最終答案:
恰好有5節(jié)車廂各有一人;
恰好有2節(jié)不相鄰的空車廂;
恰好有3節(jié)車廂有人.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的個數(shù)是_________.
(1)命題“若,則方程有實數(shù)根”的逆否命題為“若方程無實數(shù)根,則”.
(2)命題“,”的否定“,”.
(3)若為假命題,則,均為假命題.
(4)“”是“直線:與直線:平行”的充要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓:的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面四個命題中真命題的是( )
①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;
②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;
③在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均增加0.4個單位;
④對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越大.
A.①④B.②④C.①③D.②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(理科)某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)
將學生日均課外體育運動時間在上的學生評價為“課外體育達標”.
(1)請根據上述表格中的統(tǒng)計數(shù)據填寫下面列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為 “課外體育達標”與性別有關?
(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該校高三學生中,抽取3名學生,記被抽取的3名學生中的“課外體育達標”學生人數(shù)為,若每次抽取的結果是相互獨立的,求的數(shù)學期望.
獨立性檢驗界值表:
(參考公式: ,其中)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com